Periodontal disease (PD) is one of the most common diseases in dogs. Although previous studies have shown the potential of the antimicrobial peptide nisin for PD control, there is no information regarding its influence in the development of antimicrobial resistance or horizontal gene transfer (HGT). Nisin’s mutant prevention concentration (MPC) and selection window (MSW) were determined for a collection of canine oral enterococci. Isolates recovered after the determination of the MPC values were characterized for their antimicrobial profile and its nisin minimum inhibitory and bactericidal concentrations. The potential of vanA HGT between Enterococcus faecium CCGU36804 and nine clinical canine staphylococci and enterococci was evaluated. Nisin MPC values ranged from 400 to more than 600 μg/mL. In comparison with the original enterococci collection, the isolates recovered after the determination of the nisin MPC showed increased resistance towards amoxicillin/clavulanate (5%), vancomycin (5%), enrofloxacin (10%), gentamicin (10%) and imipenem (15%). The HGT of vanA gene was not observed. This work showed that nisin selective pressure may induce changes in the bacteria’s antimicrobial resistance profile but does not influence horizontal transfer of vanA gene. To our knowledge, this is the first report of nisin’s MPC and MSW determination regarding canine enterococci.
The most prevalent microorganism in diabetic foot infections (DFI) is Staphylococcus aureus, an important multidrug-resistant pathogen. The antimicrobial peptide nisin is a promising compound for DFI treatment, being effective against S. aureus. However, to avoid the selection of resistant mutants, correct drug therapeutic doses must be established, being also important to understand if nisin subinhibitory concentrations (subMIC) can potentiate resistant genes transfer between clinical isolates or mutations in genes associated with nisin resistance. The mutant selection window (MSW) of nisin was determined for 23 DFI S. aureus isolates; a protocol aiming to prompt vanA horizontal transfer between enterococci to clinical S. aureus was performed; and nisin subMIC effect on resistance evolution was assessed through whole-genome sequencing (WGS) applied to isolates subjected to a MEGA-plate assay. MSW ranged from 5–360 μg/mL for two isolates, from 5–540 μg/mL for three isolates, and from 5–720 μg/mL for one isolate. In the presence of nisin subMIC values, no transconjugants were obtained, indicating that nisin does not seem to promote vanA transfer. Finally, WGS analysis showed that incubation in the presence of nisin subMIC did not promote the occurrence of significant mutations in genes related to nisin resistance, supporting nisin application to DFI treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.