A dozen years have passed since the first genetic lesion was identified in a family with craniosynostosis, the premature fusion of the cranial sutures. Subsequently, mutations in the FGFR2, FGFR3, TWIST1, and EFNB1 genes have been shown to account for approximately 25% of craniosynostosis, whilst several additional genes make minor contributions. Using specific examples, we show how these discoveries have enabled refinement of information on diagnosis, recurrence risk, prognosis for mental development, and surgical planning. However, phenotypic variability can present a significant challenge to the clinical interpretation of molecular genetic tests. In particular, the difficulty of analyzing the complex interaction of genetic background and prenatal environment in determining clinical features, limits the value of identifying low penetrance mutations.
Rett syndrome (RTT; OMIM#312750) is a severe neurodevelopmental disorder that affects mainly girls. It has an estimated incidence of 1:10 000 -15 000 females. Mutations in the X-linked gene methyl CpGbinding protein 2 (MECP2) have been found in most patients. The most accepted explanation for the sex bias is that the Rett mutation in sporadic cases has its origin in the paternal germline X chromosome and can thus only be transmitted to females. The majority of cases are sporadic (99.5%) but some familial cases have been described. These cases can either be explained by germline mosaicism or by asymptomatic carrier mothers with skewing of X-inactivation towards the wild-type MECP2 allele. We describe one of the few familial cases of RTT in which a maternal germline mosaicism is the most likely explanation. The mutation p.Arg270fs (c.808delC) was identified in both a girl with classical RTT and her brother who had the severe neurological phenotype usually described in males. The mutation was absent in DNA extracted from blood of both parents. These type of events must be taken into consideration in the genetic counselling of families after the diagnosis of a first case of RTT in a female or a MECP2 mutation in a male.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.