The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the “woolly” allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3′ UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.
Background In mammals, hypohidrotic ectodermal dysplasia (HED) is a genetic disorder that is characterized by sparse hair, tooth abnormalities, and defects in cutaneous glands. Only four genes, EDA, EDAR, EDARADD and WNT10A account for more than 90% of HED cases, and EDA, on chromosome X, is involved in 50% of the cases. In this study, we explored an isolated case of a female Holstein calf with symptoms similar to HED. Results Clinical examination confirmed the diagnosis. The affected female showed homogeneous hypotrichosis and oligodontia as previously observed in bovine EDAR homozygous and EDA hemizygous mutants. Under light microscopy, the hair follicles were thinner and located higher in the dermis of the frontal skin in the affected animal than in the control. Moreover, the affected animal showed a five-fold increase in the number of hair follicles and a four-fold decrease in the diameter of the pilary canals. Pedigree analysis revealed that the coefficient of inbreeding of the affected calf (4.58%) was not higher than the average population inbreeding coefficient (4.59%). This animal had ten ancestors in its paternal and maternal lineages. By estimating the number of affected cases that would be expected if any of these common ancestors carried a recessive mutation, we concluded that, if they existed, other cases of HED should have been reported in France, which is not the case. Therefore, we assumed that the causal mutation was dominant and de novo. By analyzing whole-genome sequencing data, we identified a large chromosomal inversion with breakpoints located in the first introns of the EDA and XIST genes. Genotyping by PCR-electrophoresis the case and its parents allowed us to demonstrate the de novo origin of this inversion. Finally, using various sources of information we present a body of evidence that supports the hypothesis that this mutation is responsible for a skewed inactivation of X, and that only the normal X can be inactivated. Conclusions In this article, we report a unique case of X-linked HED affected Holstein female calf with an assumed full inactivation of the normal X-chromosome, thus leading to a severe phenotype similar to that of hemizygous males.
A data mining method applied to large-scale genotyping data is proposed to detect recessive loci responsible for increased mortality in cattle and that have remained undetected by previous approaches. It is based on a screen for homozygous haplotype enrichment/depletion in groups of females with different life trajectories. After validation of the results in at risk and control mating, 34 deleterious haplotypes (13 in Holstein, 11 in Montbéliarde, and 10 in Normande) were identified, with frequencies ranging from 1.5 to 7.6%. Profiles of survival curves and causes of mortality differed greatly between loci, with early juvenile, late juvenile and evenly distributed death events. Candidate causal variants were found for fifteen haplotypes. A frameshift mutation of NOA1 and a disruptive inframe deletion of RFC5, affecting two genes with no previous record of live homozygous mutants in mammals, were subject to phenotypical characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.