Recent identification of somatic MED12 mutations in most uterine leiomyomas brings a new venue for the study of the tumorigenesis of leiomyomas. We are particularly interested in the correlation of MED12 and HMGA2 gene products in leiomyomas and leiomyosarcomas with and without MED12 mutations. To address these issues, in this study we examined MED12 mutations in a large cohort of usual type leiomyomas (178 cases) and uterine leiomyosarcomas (32 cases). We found that 74.7% (133/178) of leiomyomas had MED12 mutations, which was consistent with several independent studies. In contrast, only 9.7% (3/32) of leiomyosarcomas harbored MED12 mutations. Expression analysis by Western blot and immunohistochemistry revealed that those leiomyomas with complex MED12 mutations had significantly lower protein products than matched myometrium. Interestingly, most leiomyosarcomas without MED12 mutations also had very low levels of MED12 expression in comparison to the matched myometrium. These findings suggest a potential functional role of MED12 in both benign and malignant uterine smooth muscle tumors. When we further examined HMGA2 expression in all leiomyomas and leiomyosarcomas, we found HMGA2 overexpression was exclusively present in those leiomyomas with no MED12 mutation, accounting for 10.1 % (18/178) of total leiomyomas and 40 % (18/45) of non-MED12 mutant leiomyomas. Twenty-five % (8/32) of leiomyosarcomas had HMGA2 overexpression and no MED12 mutations were found in HMGA2 positive leiomyosarcoma. These findings strongly suggest that MED12 mutations and HMGA2 overexpression are independent genetic events that occur in leiomyomas, and they may act differently in the tumorigenesis of uterine leiomyomas.
One of the classic hallmarks of cancer is disruption of cell death signalling. Inhibition of cell death promotes tumour growth and metastasis, causes resistance to chemo‐ and radiotherapies as well as targeted agents, and is frequently due to overexpression of antiapoptotic proteins rather than loss of pro‐apoptotic effectors. FLIP is a major apoptosis‐regulatory protein frequently overexpressed in solid and haematological cancers, in which its high expression is often correlated with poor prognosis. FLIP, which is expressed as long (FLIP(L)) and short (FLIP(S)) splice forms, achieves its cell death regulatory functions by binding to FADD, a critical adaptor protein which links FLIP to the apical caspase in the extrinsic apoptotic pathway, caspase‐8, in a number of cell death regulating complexes, such as the death‐inducing signalling complexes (DISCs) formed by death receptors. FLIP also plays a key role (together with caspase‐8) in regulating another form of cell death termed programmed necrosis or ‘necroptosis’, as well as in other key cellular processes that impact cell survival, including autophagy. In addition, FLIP impacts activation of the intrinsic mitochondrial‐mediated apoptotic pathway by regulating caspase‐8‐mediated activation of the pro‐apoptotic Bcl‐2 family member Bid. It has been demonstrated that FLIP can not only inhibit death receptor‐mediated apoptosis, but also cell death induced by a range of clinically relevant chemotherapeutic and targeted agents as well as ionizing radiation. More recently, key roles for FLIP in promoting the survival of immunosuppressive tumour‐promoting immune cells have been discovered. Thus, FLIP is of significant interest as an anticancer therapeutic target. In this article, we review FLIP's biology and potential ways of targeting this important tumour and immune cell death regulator.
Uterine leiomyomata (LMs) are the most common tumor affecting the female reproductive organs. The most notable pathophysiologic feature of this tumor is the excessive accumulation of rigid extracellular matrix (ECM) composed mainly of collagen types I and III. It is believed that the rigidity of the collagen-rich ECM causes symptoms such as abnormal bleeding and pelvic pain/pressure. However, the molecular pathogenesis for this ECM-rich tumor has yet to be elucidated. We have established that miR-29b was consistently down-regulated in LM compared with myometrium (MM). Hence, the function of miR-29b in LM was examined in vivo using adult female ovariectomized NOD-scid IL2Rγ(null) mice for subrenal xenograft models. In LM xenografts, restoring miR-29b inhibited the accumulation of ECM and the development of solid tumors. Although the miR-29b knockdown in MM cells increased the expression of collagens, it did not transform MM cells into tumorigenic, indicating that the down-regulation of miR-29b is essential but not sufficient for LM tumorigenesis. In addition, 17β-estradiol and progesterone down-regulated miR-29b and up-regulated mRNAs for multiple collagens in LM xenografts. Thus, we conclude that ECM production in LMs is regulated by steroid hormones via down-regulation of miR-29b, which is one of the mechanisms underlying the excessive accumulation of ECM.
The PI3K/AKT/mTOR signaling pathway regulates cell proliferation, survival and angiogenesis. The mammalian target of rapamycin (mTOR) is a protein kinase ubiquitously expressed within cells that regulates cell growth and survival by integrating nutrient and hormonal signals. mTOR exists in two complexes, mTORC1 and mTORC2. Hyperactivation of the mTOR protein has been linked to development of cancer, raising mTOR as an attractive target for cancer therapy. Prodigiosin (PG) and Obatoclax (OBX), two members of the prodiginines family, are small molecules with anticancer properties which are currently under clinical trials. In the present paper, we demonstrate that mTOR is a molecular target of both prodiginines in melanoma, a highly drug-resistant cancer model. The inhibition of mTORC1 and mTORC2 complexes by PG or OBX resulted in a loss of AKT phosphorylation at S473, preventing its full activation, with no significant effect on T308. The strongest activity inhibition (89%) was induced by PG on mTORC2. Binding assays using Surface Plasmon Resonance (SPR) provide kinetic and affinity data of the interaction of these small molecules with mTOR. In addition, in silico modelling produced a detailed atomic description of the binding modes. These results provide new data to understand the mechanism of action of these molecules, and provide new structural data that will allow the development of more specific mTOR inhibitors for cancer treatment.3
Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.