Two NO synthase (NOS) isoforms have been described in vessels, an endothelial constitutive NOS (eNOS) and an inducible NOS (iNOS). The purpose of the present study was to examine the endothelium-dependent and endothelium-independent hypotensive response in aging rats, analyzing the ability of their vessels to produce NO. The studies were performed in 2 groups of euvolemic, conscious, male Wistar rats: aging rats (n=20, 18 months old) and young rats (n=20, 5 months old). The hypotensive responses to acetylcholine, bradykinin, and sodium nitroprusside were determined. Furthermore, the expression of the NOS isoforms by Western blot and the eNOS and iNOS activities, defined as Ca2+-dependent and Ca2+-independent conversion of [14C]L-arginine into [14C]L-citrulline, respectively, were also determined. In the aging rats, we found an impaired hypotensive response to acetylcholine and bradykinin (2 NO- and endothelium-dependent hypotensive agents) that was accompanied by a preserved hypotensive response to sodium nitroprusside. Aging rats also demonstrated an enhanced sensitivity response to the pressor effect of the L-arginine antagonist L-Nomega-nitro-L-arginine and a reduced vasoconstrictor response to angiotensin II. The inhibition of NO synthesis normalized the pressor effect of angiotensin II in the aging animals. Nitrite plus nitrate plasma levels were increased in aging rats. Furthermore, cGMP content was also higher in the aging vessels. In the aging aortas, the expression of both eNOS and iNOS isoforms was enhanced. However, in aging rats, the activity of the eNOS isoform was markedly reduced, a finding that was accompanied by the presence of iNOS activity. The vessel wall of aging rats showed an enhanced expression of eNOS and iNOS isoforms. However, eNOS activity was reduced in the aging animals. These findings could explain the impaired endothelium-dependent hypotensive response associated with aging.
Although the in vivo levels of circulating estrogen concentrations seem to be associated with overexpression of both ERalpha and ERbeta in neutrophils from premenopausal women, which was further confirmed by the in vitro experiments with neutrophils from women, in vitro incubation of neutrophils from men with 17beta-estradiol only increased ERalpha protein expression which was associated with enhanced expression of nNOS protein.
Recent studies have postulated the contribution of nitric oxide (NO) released by the endothelium to the beneficial effects of estrogen. Despite a neuronal-type NO synthase (nNOS) described in neutrophils, less is known about the effect of estrogen in these cells. The aim of the present study was to analyze the expression of nNOS protein in human neutrophils under different estrogenic conditions. We first analyzed nNOS expression in neutrophils obtained from premenopausal women. During the first 2 days of the follicular phase (low circulating estrogen concentrations), nNOS expression in neutrophils was reduced with respect to that found in neutrophils obtained from the same donors during the ovulatory phase (high circulating estrogen concentrations). Moreover, the expression of nNOS protein in neutrophils obtained from postmenopausal women after transdermal estrogen therapy was markedly enhanced with respect to that observed before the treatment. In vitro incubation of neutrophils derived from men for 6 hours with 17beta-estradiol (10(-10) to 10(-8) mol/L) upregulated the expression of nNOS protein. The 17beta-estradiol receptor antagonists, tamoxifen (10(-8) mol/L) and ICI 182780 (10(-8) mol/L), inhibited the upregulation of nNOS protein induced by 17beta-estradiol. The putative functional implication was denoted by a reduced expression of the CD18 antigen on the surface of 17beta-estradiol-incubated neutrophils, which was accompanied by a decreased adhesive capacity. Both effects were prevented by an NO antagonist. In conclusion, the in vivo levels of circulating estrogen concentrations seem to be associated with the level of nNOS protein expression in neutrophils from women. Moreover, low doses of 17beta-estradiol upregulate nNOS protein expression in neutrophils from men. The increased ability of 17beta-estradiol-incubated neutrophils derived from men to produce NO reduced their adhesive properties.
Despite the evidence that cytokines stimulate nitric oxide (NO) production by inducible nitric oxide synthase (iNOS), several reports recently demonstrated that the hypotensive response related to endothelial nitric oxide synthase (eNOS) activity could be inhibited by the same cytokines. The aim of the present work was to analyze whether NO generated by vascular smooth muscle cells (VSMC) could modify eNOS protein expression in endothelial cells. Bovine aortic endothelial cells (BAEC) and bovine VSMC (BVSMC) in coculture were used for the study. Interleukin-1beta (IL-1beta, 10 ng/ml)-treated BVSMC, which expressed iNOS protein, decreased eNOS protein expression in BAEC. The presence of NO antagonists N(omega)-nitro-L-arginine methyl ester (10(-3) mol/l) or N(G)-monomethyl-L-arginine (10(-3) mol/l) prevented the decrease in eNOS protein expression induced by IL-1beta-treated BVSMC. Surprisingly, two different NO donors, 3-morpholinosydnonimine (10(-4) mol/l) and S-nitroso-N-acetyl-D,L-penicillamine (10(-4) mol/l), failed to modify eNOS expression in BAEC, suggesting the existence of a diffusible mediator released from IL-1beta-treated BVSMC that acts on endothelial cells by reducing eNOS expression. The presence of NO antagonists reduced tumor necrosis factor-alpha (TNF-alpha) production by IL-1beta-stimulated BVSMC. This effect was also produced in the presence of a protein kinase G inhibitor, guanosine-5'-O-(2-thiodiphosphate) trilithium salt. A polyclonal antibody against TNF-alpha prevented eNOS expression in the BAEC-BVSMC coculture. In conclusion, NO by itself failed to modify eNOS protein expression in endothelial cells but increased TNF-alpha generation by IL-1beta-stimulated BVSMC and, in this way, reduced eNOS expression in the endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.