Since 1929, several researchers have conducted studies in relation to the nucleoside of adenosine (1) mainly distribution identifying, characterizing their biological importance and synthetic chemistry to which this type of molecule has been subjected to obtain multiple of its derivatives. The receptors that interact with adenosine and its derivatives, called purinergic receptors, are classified as A1, A2A, A2B and A3. In the presence of agonists and antagonists, these receptors are involved in various physiological processes and diseases. This review describes and compares some of the synthetic methods that have been developed over the last 30 years for obtaining some adenosine derivatives, classified according to substitution processes, complexation, mating and conjugation. Finally, we mention that although the concentrations of these nucleosides are low in normal tissues, they can increase rapidly in pathophysiological conditions such as hypoxia, ischemia, inflammation, trauma and cancer. In particular, the evaluation of adenosine derivatives as adjunctive therapy promises to have a significant impact on the treatment of certain cancers, although the transfer of these results to clinical practice requires a deeper understanding of how adenosine regulates the process of tumorigenesis.
Background: Adenosine is a natural nucleoside present in various organs and tissues, where it acts as a modulator of diverse physiological and pathophysiological processes. These actions are mediated by at least four G protein-coupled receptors, which are widely and differentially expressed in tissues. Interestingly, high concentrations of adenosine have been reported in a variety of tumors. In this context, the final output of adenosine in tumorigenesis will likely depend on the constellation of adenosine receptors expressed by tumor and stromal cells. Notably, activation of the A3 receptor can reduce the proliferative capacity of various cancer cells. Objective: The objective of this study is to describe the anti-proliferative effects of two previously synthesized adenosine derivatives with A3 agonist action (compounds 2b and 2f) through in vitro assays. Results: The antiproliferative effects of adenosine derivatives (after determining IC50 values) were comparable or even higher than those described for IB-MECA, a commercially available A3 agonist. Among possible mechanisms involved, apoptosis was found to be induced in MCF-7 cells but not in AGS or MDA-MB-231 cells. Surprisingly, we were unable to observe cellular senescence induction upon treatment with compounds 2b and 2f in any of the cell lines studied, although we cannot rule out other forms of cell cycle exit at this point. Conclusion: Both adenosine derivatives showed antiproliferative effects on gastric and breast cancer cell lines, and were able to induce apoptosis, at least in the MCF-7 cell line. Further studies will be necessary to unveil receptor specificity and mechanisms accounting for the antiproliferative properties of these novel semi-synthetic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.