Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.
The pep4um gene (um04926) of Ustilago maydis encodes a protein related to either vacuolar or lysosomal aspartic proteases. Bioinformatic analysis of the Pep4um protein revealed that it is a soluble protein with a signal peptide suggesting that it likely passes through the secretory pathway, and it has two probable self-activation sites, which are similar to those in Saccharomyces cerevisiae PrA. Moreover, the active site of the Pep4um has the two characteristic aspartic acid residues of aspartyl proteases. The pep4um gene was cloned, expressed in Pichia pastoris and a 54 kDa recombinant protein was observed. Pep4um-rec was confirmed to be an aspartic protease by specifically inhibiting its enzymatic activity with pepstatin A. Pep4um-rec enzymatic activity on acidic hemoglobin was optimal at pH 4.0 and at 40 °C. To the best of our knowledge this is the first report about the heterologous expression of an aspartic protease from a basidiomycete. An in-depth in silico analysis suggests that Pep4um is homolog of the human cathepsin D protein. Thus, the Pep4um-rec protein may be used to test inhibitors of human cathepsin D, an important breast cancer therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.