The objective of this work was to study the effect of root and foliar application of two commercial products containing amino acids from plant and animal origin on iron (Fe) nutrition of tomato seedlings cultivated in two nutrient media: lime and normal nutrient solutions. In the foliar‐application experiment, each product was sprayed with 0.5 and 0.7 mL L–1 2, 7, 12, and 17 d after transplanting. In the root application experiment, 0.1 and 0.2 mL L–1 of amino acids products were added to the nutrient solutions. In both experiments, untreated control plants were included as well. Foliar and root application of the product containing amino acids from animal origin caused severe plant‐growth depression and nonpositive effects on Fe nutrition were found. In contrast, the application of the product from plant origin stimulated plant growth. Furthermore, significantly enhanced root and leaf FeIII‐chelate reductase activity, chlorophyll concentration, leaf Fe concentration, and FeII : Fe ratio were found in tomato seedlings treated with the product from plant origin, especially when the amino acids were directly applied to the roots. These effects were more evident in plants developed under lime‐induced Fe deficiency. The positive results on Fe uptake may be related to the action of glutamic acid, the most abundant amino acid in the formulation of the product from plant origin.
Artículo de publicación ISITree hollows are keystone structures for saproxylic fauna and host numerous endangered species. However, not all tree hollows are equal. Many variables including physical, biotic and chemical ones, can characterise a tree hollow, however, the information that these could provide about the saproxylic diversity they harbour has been poorly explored. We studied the beetle assemblages of 111 Quercus species tree hollows in four protected areas of the Iberian Peninsula. Three physical variables related to tree hollow structure, and two biotic ones (presence of Cetoniidae and Cerambyx species recognised as ecosystem engineers) were measured in each hollow to explore their relative effect on beetle assemblages. Moreover, we analysed the chemical composition of the wood mould in 34 of the hollows, in order to relate beetle diversity with hollow quality. All the environmental variables analysed (physical and biological) showed a significant influence on saproxylic beetle assemblages that varied depending on the species. Furthermore, the presence of ecosystem engineers affected both physical and chemical features. Although wood mould volume, and both biotic variables could act as beetle diversity surrogate, we enhance the presence of Cetoniidae and Cerambyx activity (both easily observable in the field) as indicator variables, even more if both co-occur as each affect to different assemblages. Finally, assimilable carbon and phosphorous contents could act as indicator for past and present beetle activity inside the cavity that could become a useful tool in functional diversity studies. However, an extension of this work to other taxonomic groups would be desirable."Ministerio de Ciencia e Innovacion"
CGL2011-2365
The effects of a severe drought on fine-root and ectomycorrhizal biomass were investigated in a forest ecosystem dominated by Pinus oaxacana located in Oaxaca, Mexico. Root cores were collected during both the wet and dry seasons of 1998 and 1999 from three sites subjected to different forest management treatments in 1990 and assessed for total fine-root biomass and ectomycorrhizal-root biomass. Additionally, a bioassay experiment with P. oaxacana seedlings was conducted to assess the ectomycorrhizal inoculum potential of the soil for each of the three stands. Results indicated that biomasses of both fine roots and ectomycorrhizal roots were reduced by almost 60% in the drought year compared to the nondrought year. There were no significant differences in ectomycorrhizal and fine-root biomass between the wet and dry seasons. Further, the proportion of total root biomass consisting of ectomycorrhizal roots did not vary between years or seasons. These results suggest that both total fine-root biomass and ectomycorrhizal-root biomass are strongly affected by severe drought in these high-elevation tropical pine forests, and that these responses outweigh seasonal effects. Forest management practices in these tropical pine forests should consider the effects of drought on the capacity of P. oaxacana to maintain sufficient levels of ectomycorrhizae especially when there is a potential for synergistic interactions between multiple disturbances that may lead to more severe stress in the host plant and subsequent reductions in ectomycorrhizal colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.