Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β‐sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Amyloid fibrils (AFs) are highly ordered protein nanofibers composed of cross β-structure that occur in nature, but that also accumulate in age-related diseases. Amyloid propensity is a generic property of proteins revealed by conditions that destabilize the native state, suggesting that food processing conditions may promote AF formation. This had only been shown for foie gras, but not in common foodstuffs. We here extracted a dense network of fibrillar proteins from commonly consumed boiled hen egg white (EW) using chemical and/or enzymatic treatments. Conversion of EW proteins into AFs during boiling was demonstrated by thioflavin T fluorescence, Congo red staining, and X-ray fiber diffraction measurements. Our data show that cooking converts approximately 1−3% of the protein in EW into AFs, suggesting that they are a common component of the human diet.
Amyloid fibrils (AFs) are highly ordered nanofibers composed of proteins rich in β-sheet structures. In this study, the impact of heating conditions relevant in food processing on AF formation of wheat gluten (WG) was investigated. Unheated and heated WG samples were treated with proteinase K and trypsin to solubilize the nonfibrillated protein, while protein fibrils were extracted with 0.05 M sodium phosphate buffer (pH 7.0) from the undissolved fraction obtained by the same enzymatic treatment. Conditions (i.e., heating at 78° for 22 h) resembling those in slow cooking induced the formation of straight fibrils (ca. 700 nm in length), whereas boiling WG for at least 15 min resulted in longer straight fibrils (ca. 1–2 μm in length). The latter showed the typical green birefringence of AFs when stained with Congo red. Their X-ray fiber diffraction patterns showed the typical reflection (4.7 Å) for inter-β-strand spacing. These results combined with those of Fourier transform infrared and thioflavin T spectroscopy measurements validated the identification of β-rich amyloid-like fibrils (ALFs) in dispersions of boiled WG. Boiling for at least 15 min converted approximately 0.1–0.5% of WG proteins into ALFs, suggesting that they can be present in heat-treated WG-containing food products and that food-relevant heating conditions have the potential to induce protein fibrillation.
Formation of amyloid fibrils (i.e. protein structures containing a compact core of ordered β-sheet structures) from food proteins can improve their techno-functional properties. Wheat gluten is the most consumed cereal protein by humans and extensively present in food and feed systems. Hydrolysis of wheat gluten increases the solubility of its proteins and brings new opportunities for value creation. In this study, the formation of amyloid-like fibrils (ALFs) from wheat gluten peptides (WGPs) under food relevant processing conditions was investigated. Different hydrothermal treatments were tested to maximize the formation of straight ALFs from WGPs. Thioflavin T (ThT) fluorescence measurements and transmission electron microscopy (TEM) were used to study the extent of fibrillation and the morphology of the fibrils, respectively. First, the formation of fibrils by heating solutions of tryptic WGPs [degrees of hydrolysis 2.0% (DH 2) or 6.0% (DH 6)] was optimized using a response surface design. WGP solutions were incubated at different pH, times and temperatures. DH 6 WGPs had a higher propensity for fibrillation than did DH 2 WGPs. Heating DH 6 WGPs at 2.0% (w/v) for 38 hours at 85 °C and pH 7.0 resulted in optimal fibrillation. Secondly, trypsin, chymotrypsin, thermolysin, papain and proteinase K were used to produce different DH 6 WGPs. After enzyme inactivation and subsequent heating at optimal fibrillation conditions, chymotrypsin and proteinase K DH 6 WGPs produced small worm-like fibrils whereas fibrils prepared from trypsin DH 6 WGPs were long and straight. The surface hydrophobicity of the peptides was key for fibrillation. Thirdly, peptides from the wheat gluten components gliadin and glutenin fractions formed smaller and worm-like fibrils than did WGPs. Thus, peptides of both gluten protein fractions jointly contribute in gluten fibrillation.
Highly ordered, straight amyloid fibrils readily lend themselves to structure determination techniques and have therefore been extensively characterized. However, the less ordered curly fibrils remain relatively understudied, and the structural organization underlying their specific characteristics remains poorly understood. We found that the exemplary curly fibrilforming protein ovalbumin contains multiple aggregation prone regions (APRs) that form straight fibrils when isolated as peptides or when excised from the full-length protein through hydrolysis. In the context of the intact full-length protein, however, the regions separating the APRs facilitate curly fibril formation. In fact, a metaanalysis of previously reported curly fibril-forming proteins shows that their inter-APRs are significantly longer and more hydrophobic when compared to straight fibril-forming proteins, suggesting that they may cause strain in the amyloid state. Hence, inter-APRs driving curly fibril formation may not only apply to our model protein but rather constitute a more general mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.