While initial theories on quantum confinement in colloidal quantum dots (QDs) led to analytical band gap/size relations or sizing functions, numerical methods describe size quantization more accurately. However, because of the lack of reliable sizing functions, researchers fit experimental band gap/size data sets using models with redundant, physically meaningless parameters that break down upon extrapolation. Here, we propose a new sizing function based on a proportional correction for nonparabolic bands. Using known bulk parameters, we predict size quantization for groups IV, III−V, II−VI, and IV−VI and metal−halide perovskite semiconductors, including straightforward adaptations for negativegap semiconductors and nonspherical QDs. Refinement with respect to experimental data is possible using the Bohr diameter as a fitting parameter, by which we show a statistically relevant difference in the band gap/size relation for wurtzite and zinc blende CdSe. The general sizing function proposed here unifies the QD size calibration and enables researchers to assess bulk semiconductor parameters and predict the size quantization in unexplored materials.
Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden–Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of ∼20%. The emission was attributed to the Sb3+-doping within the structure.
Perovskite-type oxynitrides AB(O,N)3 are potential candidates for photoelectrode materials in solar water splitting. A drawback of these materials is their low sintering tendency resulting in low electrical conductivities. Typically, they are prepared by ammonia treatment of insulating, wide band gap oxides. In this study, we propose an approach starting from small band gap oxides Eu1−xCaxTiO3−δ and then widen the band gaps in a controlled way by ammonolysis and partial Ca2+ substitution. Both together induced a distortion of the octahedral network and dilution of the Eu4f and N2p levels in the valence band. The effect is the stronger the more Ca2+ is present. Within the series of samples, Eu0.4Ca0.6Ti(O,N)3 had the most suitable optical band gap (EG ≈ 2.2 eV) for water oxidation. However, its higher Eu content compared to Eu0.1Ca0.9Ti(O,N)3 slowed down the charge carrier dynamics due to enhanced trapping and recombination as expressed by large accumulation (τon) and decay (τoff) times of the photovoltage of up to 109 s and 486 s, respectively. In contrast, the highly Ca2+-substituted samples (x ≥ 0.7) were more prone to formation of TiN and oxygen vacancies also leading to Ti3+ donor levels below the conduction band. Therefore, a precise control of the ammonolysis temperature is essential, since even small amounts of TiN can suppress the photovoltage generation by fast recombination processes. Water oxidation tests on Eu0.4Ca0.6Ti(O,N)3 revealed a formation of 7.5 μmol O2 from 50 mg powder together with significant photocorrosion of the bare material. Combining crystal structure, chemical composition, and optical and electronical band gap data, a first simplified model of the electronical band structure of Eu1−xCaxTi(O,N)3 could be proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.