We hypothesized that neuronal NO release as well as its bioavailability and vasomotor response could be affected when aging and hypertension are present simultaneously. The neuronal nitric oxide (NO) release, its metabolism and vasomotor response induced by electrical field stimulation was analyzed in isolated segments of endothelium-denuded mesenteric arteries from young and old spontaneously hypertensive rats (SHR). The nitric oxide synthase (NOS) inhibitor NG-nitro-arginine-methyl ester (L-NAME) and NOS inhibitor 7-nitroindazole both strengthened electrical field stimulation-elicited contractions more in arteries from young than aged SHR rats. Superoxide dismutase (SOD) potentiated the L-NAME effect in segments from old rats, whereas catalase decreased the contractions induced by electrical field stimulation and noradrenaline but did not modify the L-NAME effect. In noradrenaline-precontracted segments, sodium nitroprusside induced a similar relaxation in arteries from both experimental groups. This relaxation was increased by SOD in old SHR. 8Br cGMP induced greater relaxation in segments from old than from young SHR. Electrical field stimulation induced a tritium release in arteries preincubated with [3H]-noradrenaline, that was similar in both young and old SHR rats. Electrical field stimulation induced NO2– formation, which was greater in segments from old than young SHR rats. Basal cGMP levels and those stimulated with sodium nitroprusside were similar in segments from both groups. Superoxide anion production was greater from old than young SHR rats. Peroxynitrite production induced by electrical field stimulation was only detected in segments from old SHR. The results obtained in mesenteric arteries from old SHR showed increased neuronal NO release and superoxide anion production with respect to those observed in arteries from young SHR rats. This induced decreased NO bioavailability through peroxynitrite formation. The final effect is to decrease the involvement of neuronal NO in electrical field stimulation-induced vasomotor response in arteries from old SHR rats.
In the present experiments, Selye's granuloma pouch technique was applied to the study of the effect of host nutritional state on inflammation and the local tissue response. The normal response of well-nourished laboratory rats fed a diet containing 28% protein to the injection of 1% croton oil into a preformed subcutaneous air sac involved the accumulation of hemorrhagic exudate in the pouch lumen and the progressive thickening of the pouch wall, with the proliferation and maturation of fibroblasts and the eventual laying-down of collagen. In malnourished animals, fed a diet containing only 3–4% protein but adequate in all other nutrients, the above reactions were inhibited. This inhibitory effect was encountered after a relatively short period of deficiency and became more marked as the deficiency progressed. No consistent, clear-cut difference was seen in the leukocytic or neutrophilic response between the two dietary groups after the injection of 1% croton oil.
A significantly higher proportion of accidental bacterial infections was found in the pouches of malnourished animals than in those of well-nourished animals. This was considered to be a possible consequence of the depressed inflammatory response in malnourished rats.
The advantages of the granuloma pouch as an experimental procedure for the study of local reactions to different noxae, and the influence of malnutrition on these reactions have been discussed and suggestions for future studies presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.