Guanidinium is a versatile functional group with unique properties. In biological systems, hydrogen-bonding and electrostatic interactions involving the arginine side chains of proteins are critical to stabilise complexes between proteins and nucleic acids, carbohydrates or other proteins. Leading examples of artificial receptors for carboxylates, phosphates and other oxoanions, such as sulfate or nitrate are highlighted in this tutorial review, addressed to readers interested in biology, chemistry and supramolecular chemistry.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
Novel thermodynamically stable supramolecular donor-acceptor dyads have been synthesized. In particular, we assembled successfully C(60), as an electron acceptor, with the strong electron donor TTF through a complementary guanidinium-carboxylate ion pair. Two strong and well-oriented hydrogen bonds, in combination with ionic interactions, ensure the formation of stable donor-acceptor dyads. The molecular architecture has been fine-tuned by using chemical spacers of different lengths (i.e., phenyl versus biphenyl) and functional groups (i.e., ester versus amide), thus providing meaningful incentives to differentiate between through-bond and through-space electron-transfer scenarios. In electrochemical studies, both the donor and acceptor character of the TTF and C(60) units, respectively, have been clearly identified. Steady-state and time-resolved emission studies, however, show a solvent-dependent fluorescence quenching in C(60)*TTF dyads as well as the formation of the C(60)(*)(-)*TTF(*)(+) radical ion pairs, for which we determined lifetimes that are in the range of hundred of nanoseconds to microseconds. The complex network that connects C(60) with TTF in the dyads and the flexible nature of the spacer result in through-space electron-transfer processes. This first example of electron transfer in C(60)-based dyads, connected by strong hydrogen bonds, demonstrates that this approach can add outstanding benefits to the construction of artificial photosynthetic systems that bear a closer resemblance to the natural one.
The preorganization of bifunctional 2-ureido-4-pyrimidinones mediated by either 1,3-substituted adamantane or meta-substituted phenylene ring linkers leads to the preferred formation of stable pentameric (1)(5) and hexameric (2)(6) assemblies, respectively. Despite the high binding constant of the 2-ureido-4-pyrimidinone dimers and the highly preorganized structure of the monomer, the predominant formation of cycles (1)(5) and (2)(6) in solution occurs only within a specific concentration range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.