Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast‐growing bacteria isolated from these samples. 16S rRNA gene amplicon sequencing of two green snow samples showed that bacteria inhabiting these samples are mostly represented by families Burkholderiaceae (46.31%), Flavobacteriaceae (22.98%), and Pseudomonadaceae (17.66%). Identification of 45 fast‐growing bacteria isolated from green snow was performed using 16S rRNA gene sequencing. We demonstrated that they belong to the phyla Actinobacteria and Proteobacteria, and are represented by the genera Arthrobacter, Cryobacterium, Leifsonia, Salinibacterium, Paeniglutamicibacter, Rhodococcus, Polaromonas, Pseudomonas, and Psychrobacter. Nearly all bacterial isolates exhibited various growth temperatures from 4°C to 25°C, and some isolates were characterized by a high level of enzymatic activity. Phenotyping using Fourier transform infrared (FTIR) spectroscopy revealed a possible accumulation of intracellular polymer polyhydroxyalkanoates (PHA) or lipids in some isolates. The bacteria showed different lipids/PHA and protein profiles. It was shown that lipid/PHA and protein spectral regions are the most discriminative for differentiating the isolates.
Spectral quality control is an important step in the analysis of infrared spectral data, however, often neglected in scientific literature. A frequently used quality test that was originally developed for infrared spectra of bacteria is provided by OPUS software from Bruker Optik GmbH. In this study, the OPUS quality test is applied to a large number of spectra of bacteria, yeasts and moulds and hyperspectral images of microorganisms. It is shown that the use of strict thresholds for parameters of the OPUS quality test leads to discarding too many spectra. A strategy for optimizing parameters thresholds of the OPUS quality test is provided and a novel approach for spectral quality testing based on extended multiplicative signal correction (EMSC) is suggested. For all the data sets considered in our study, the EMSC quality test is shown to be the best among different alternatives of OPUS quality test provided.
Temperature fluctuations and nutrient composition are the main parameters influencing green snow microbiome. In this study we investigated the influence of temperature and nutrient conditions on the growth and cellular chemical profile of bacteria isolated from green snow. Chemical profiling of the green snow bacteria was done by high-throughput FTIR spectroscopy combined with multivariate data analysis. We showed that temperature and nutrients fluctuations strongly affect growth ability and chemical profile of the green snow bacteria. The size of colonies for green snow bacteria grown at higher (25 °C) and lower (4 °C and 10 °C) than optimal temperature (18 °C) was smaller. All isolates grew on rich medium, and only 19 isolates were able to grow on synthetic minimal media. Lipid and mixed spectral regions showed to be phylogeny related. FTIR fingerprinting indicates that lipids are often affected by the temperature fluctuations. Growth on different media resulted in the change of the whole chemical profile, where lipids showed to be more affected than proteins and polysaccharides. Correlation analysis showed that nutrient composition is clearly strongly influencing chemical changes in the cells, followed by temperature.
A variety of seaframing/synchroscan image tubes are now under design and manufacturing in the Department of Photoelectromcs, General Physics Institute. Among them are: a series ofthe well-known PVOO1 image tubes introduced into wide practice since 1978, a set of more advanced PIFOO1 tubes originally designed in 1979, specially developed femtosecond streak tubes ofBSV-type, which were initially proposed in 1987, and finally a number ofPF-type tubes placed in service last year. The whole set of these image tubes may cover the spectral range from 1 15 nm up to 1 .55 him, providing maximum sensitivity of 0.5 tA/W at 1 .55 tm (SluR) and up to 3 mAJW at 900nm (525/ER). Various input photocathode windows may be used: fibre-optics or borosilicate substrates which blue transparency starts at 350 nm, UV-glass windows (>200 nm), MgF2 input window (>1 15 mu). All tubes with photocathode-accelerating mesh geometry have photocathode area of 6mm in diameter, while the tubes in non-mesh configuration (PV and PF) have a rectangular photocathode area of not less than 4mm by 18mm. The described tubes may be supplied with any type of phosphor screen (red, orange, blue, green) deposited onto fibre-optics faceplate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.