Abstract. The automatic contrail tracking algorithm (ACTA) -developed to automatically follow contrails as they age, drift and spread -enables the study of a large number of contrails and the evolution of contrail properties with time. In this paper we present a year's worth of tracked contrails,
Abstract:The WeCare project (Utilizing Weather information for Climate efficient and eco efficient future aviation), an internal project of the German Aerospace Center (Deutsches Zentrum für Luft-und Raumfahrt, DLR), aimed at finding solutions for reducing the climate impact of aviation based on an improved understanding of the atmospheric impact from aviation by making use of measurements and modeling approaches. WeCare made some important contributions to advance the scientific understanding in the area of atmospheric and air transportation research. We characterize contrail properties, show that the aircraft type significantly influences these properties, and how contrail-cirrus interacts with natural cirrus. Aviation NO x emissions lead to ozone formation and we show that the strength of the ozone enhancement varies, depending on where within a weather pattern NO x is emitted. These results, in combination with results on the effects of aerosol emissions on low cloud properties, give a revised view on the total radiative forcing of aviation. The assessment of a fleet of strut-braced wing aircraft with an open rotor is investigated and reveals the potential to significantly reduce the climate impact. Intermediate stop operations have the potential to significantly reduce fuel consumption. However, we find that, if only optimized for fuel use, they will have an increased climate impact, since non-CO 2 effects compensate the reduced warming from CO 2 savings. Avoiding climate sensitive regions has a large potential in reducing climate impact at relatively low costs. Taking advantage of a full 3D optimization has a much better eco-efficiency than lateral re-routings, only. The implementation of such operational measures requires many more considerations. Non-CO 2 aviation effects are not considered in international agreements. We showed that climate-optimal routing could be achieved, if market-based measures were in place, which include these non-CO 2 effects. An alternative measure to foster climate-optimal routing is the closing of air spaces, which are very climate-sensitive. Although less effective than an unconstrained optimization with respect to climate, it still has a significant potential to reduce the climate impact of aviation. By combining atmospheric and air transportation research, we assess climate mitigation measures, aiming at providing information to aviation stakeholders and policy-makers to make aviation more climate compatible.
Mean properties of individual contrails are characterized for a wide range of jet aircraft as a function of age during their life cycle from seconds to 11.5 h (7.4-18.7 km altitude, -88 to -31 degrees C ambient temperature), based on a compilation of about 230 previous in situ and remote sensing measurements. The airborne, satellite, and ground-based observations encompass exhaust contrails from jet aircraft from 1972 onwards, as well as a few older data for propeller aircraft. The contrails are characterized by mean ice particle sizes and concentrations, extinction, ice water content, optical depth, geometrical depth, and contrail width. Integral contrail properties include the cross-section area and total number of ice particles, total ice water content, and total extinction (area integral of extinction) per contrail length. When known, the contrail-causing aircraft and ambient conditions are characterized. The individual datasets are briefly described, including a few new analyses performed for this study, and compiled together to form a "contrail library" (COLI). The data are compared with results of the Contrail Cirrus Prediction (CoCiP) model. The observations confirm that the number of ice particles in contrails is controlled by the engine exhaust and the formation process in the jet phase, with some particle losses in the wake vortex phase, followed later by weak decreases with time. Contrail cross sections grow more quickly than expected from exhaust dilution. The cross-section-integrated extinction follows an algebraic approximation. The ratio of volume to effective mean radius decreases with time. The ice water content increases with increasing temperature, similar to non-contrail cirrus, while the equivalent relative humidity over ice saturation of the contrail ice mass increases at lower temperatures in the data. Several contrails were observed in warm air above the Schmidt-Appleman threshold temperature. The "emission index" of ice particles, i.e., the number of ice particles formed in the young contrail per burnt fuel mass, is estimated from the measured concentrations for estimated dilution; maximum values exceed 10(15) kg(-1). The dependence of the data on the observation methods is discussed. We find no obvious indication for significant contributions from spurious particles resulting from shattering of ice crystals on the microphysical probes
<p><strong>Abstract.</strong> Mean properties of individual contrails are characterized for a wide range of jet aircraft as a function of age during their lifecycle from seconds to 11.5 hours (7.4 to 18.7&#8201;km altitude, &#8722;88&#8201;&#176;C to &#8722;31&#8201;&#176;C ambient temperature), based on a compilation of about 230 previous in-situ and remote sensing measurements. The airborne, satellite, and ground-based observations encompass exhaust contrails from jet aircraft since 1972, and a few older data for propeller aircraft. The contrails are characterized by mean ice particle sizes and concentrations, extinction, ice water content, optical depth, geometrical depth, and contrail width. Integral contrail properties include the cross-section area and total number of ice particles, total ice water content, and total extinction (area-integral of extinction) per contrail length. When known, the contrail-causing aircraft and ambient conditions are characterized. The individual datasets are briefly described, including a few new analyses performed for this study, and compiled together to form a "contrail library" (COLI). The data are compared with results of the Contrail Cirrus Prediction model CoCiP. The observations confirm that the number of ice particles in contrails is controlled by the engine exhaust and the formation process in the jet phase, with some particle losses in the wake vortex phase, followed later by weak decreases with time. Contrail cross-sections grow more quickly than expected from exhaust dilution. The cross-section integrated extinction follows an algebraic approximation. The ratio of volume to effective mean radius decreases with time. The ice water content increases with increasing temperature, similar to non-contrail cirrus, while the equivalent relative humidity over ice saturation of the contrail ice mass increases at lower temperatures in the data. Several contrails were observed in warm air above the Schmidt&#8211;Appleman threshold temperature. The &#8220;emission index&#8221; of ice particles, i.e. the number of ice particles formed in the young contrail per burnt fuel mass, is estimated from the measured concentrations for estimated dilution; maximum values exceed 10<sup>15</sup>&#8201;kg<sup>&#8722;1</sup>. The dependence of the data on the observation methods is discussed. We find no obvious indication for significant contributions from spurious particles resulting from shattering of ice crystals on the microphysical probes.</p>
A new Rapid Retrieval of Upwelling irradiances from MSG/SEVIRI (RRUMS) is presented. It has been developed to observe the top-of-atmosphere irradiances of small scale and rapidly changing features that are not sufficiently resolved by specific Earth radiation budget sensors. Our retrieval takes advantage of the spatial and temporal resolution of MSG/SEVIRI and provides outgoing longwave and reflected shortwave radiation only by means of a combination of SEVIRI channels. The longwave retrieval is based on a simple linear combination of brightness temperatures from the SEVIRI infrared channels. The shortwave retrieval is based on a neural network that requires as input the visible and near-infrared SEVIRI channels. Both LW and SW algorithms have been validated by comparing their results with CERES and GERB irradiance observations. While being less accurate than their dedicated counterparts, the SEVIRI-based methods have two major advantages compared to CERES and GERB: their higher spatial resolution and the better temporal resolution. With our retrievals it is possible to observe the radiative effect of small-scale features such as cumulus clouds, cirrus clouds, or aircraft contrails. The spatial resolution of SEVIRI is 3 km × 3 km in the sub-satellite point, remarkably better than that of CERES (20 km) or GERB (45 km). The temporal resolution is 15 min (5 min in the Rapid-Scan mode), the same as GERB, but significantly better than that of CERES which, being on board of a polar orbiting satellite, has a temporal resolution as low as 2 overpasses per day
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.