Background Sickle cell trait (HbAS) confers partial protection against malaria by reducing the adhesion of Plasmodium falciparum -infected erythrocytes to host receptors, but little is known about its potential protection against placental malaria. Methods Using flow cytometry, we assessed the recognition of HbAA and HbAS VAR2CSA-expressing infected erythrocytes, by plasma from 159 Beninese pregnant women with either HbAA (normal) or HbAS. Using multivariate linear models adjusted for gravidity, parasite infection at delivery, glucose-6-phosphate dehydrogenase deficiency, and α-thalassemia carriage, we observed significantly reduced cell surface antibody binding of HbAS-infected erythrocytes by plasma from HbAS compared with HbAA women ( P < 10 –3 ). Results The difference in cell surface antibody binding was only observed when infected erythrocytes and plasma were associated according to the same hemoglobin genotype. Similar levels of VAR2CSA-specific antibody were measured by enzyme-linked immunosorbent assay in the 2 groups, suggesting that the altered interaction between VAR2CSA and HbAS women’s antibodies could reflect abnormal display of VAR2CSA on HbAS erythrocytes. Conclusions Our data stress the need for assessments of erythrocyte disorders such as the sickle cell trait in a population group when studying immunological responses to P falciparum .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.