ObjectiveHepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients.DesignTo study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine.ResultsWe report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN.ConclusionWe conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.
Glycogen storage disease type I (GSDI) is a rare metabolic disease due to glucose-6 phosphatase deficiency, characterized by fasting hypoglycemia. Patients also develop chronic kidney disease whose mechanisms are poorly understood. To decipher the process, we generated mice with a kidney-specific knockout of glucose-6 phosphatase (K.G6pc mice) that exhibited the first signs of GSDI nephropathy after 6 months of G6pc deletion. We studied the natural course of renal deterioration in K.G6pc mice for 18 months and observed the progressive deterioration of renal functions characterized by early tubular dysfunction and a later destruction of the glomerular filtration barrier. After 15 months, K.G6pc mice developed tubular-glomerular fibrosis and podocyte injury, leading to the development of cysts and renal failure. On the basis of these findings, we were able to detect the development of cysts in 7 out of 32 GSDI patients, who developed advanced renal impairment. Of these 7 patients, 3 developed renal failure. In addition, no renal cysts were detected in six patients who showed early renal impairment. In conclusion, renal pathology in GSDI is characterized by progressive tubular dysfunction and the development of polycystic kidneys that probably leads to the development of irreversible renal failure in the late stages. Systematic observations of cyst development by kidney imaging should improve the evaluation of the disease's progression, independently of biochemical markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.