The current Martian atmosphere is about five times more enriched in deuterium than Earth's, providing a direct testimony that Mars hosted vastly more water in its early youth than nowadays. Estimates of the total amount of water lost to space from the current mean D/H value depend on a rigorous appraisal of the relative escape between deuterated and non-deuterated water. Isotopic fractionation of D/H between the lower and the upper atmospheres of Mars has been assumed to be controlled by water condensation and photolysis, although their respective role in influencing the relative proportion of atomic D and H populations has remained speculative. Here we report HDO and H 2 O profiles observed by the Atmospheric Chemistry Suite (ExoMars Trace Gas Orbiter) in orbit around Mars that, once combined with expected photolysis rates, reveal the prevalence of the perihelion season for the formation of atomic H and D at altitudes relevant for escape. In addition, while condensation-induced fractionation is the main driver of variations of D/H in water vapour, the differential photolysis of HDO and H 2 O is a more important factor in determining the isotopic composition of the dissociation products.
By measuring the regular oscillations of the density of CO 2 in the upper atmosphere (between 120 and 190 km), the mass spectrometer MAVEN/NGIMS (Atmosphere and Volatile EvolutioN/Neutral Gas Ion Mass Spectrometer) reveals the local impact of gravity waves. This yields precious information on the activity of gravity waves and the atmospheric conditions in which they propagate and break. The intensity of gravity waves measured by MAVEN in the upper atmosphere has been shown to be dictated by saturation processes in isothermal conditions. As a result, gravity waves activity is correlated to the evolution of the inverse of the background temperature. Previous data gathered at lower altitudes (∼95 to ∼150 km) during aerobraking by the accelerometers on board MGS (Mars Global Surveyor), ODY (Mars Odyssey) and MRO (Mars Reconnaissance Orbiter) are analyzed in the light of those recent findings with MAVEN. The anti-correlation between GW-induced density perturbations and background temperature is plausibly found in the ODY data acquired in the polar regions, but not in the MGS and MRO data. MRO data in polar regions exhibit a correlation between the density perturbations and the Brunt-Väisälä frequency (or, equivalently, static stability), obtained from Global Climate Modeling compiled in the Mars Climate Database. At lower altitude levels (between 100 and 120 km), although wave saturation might still be dominant, isothermal conditions are no longer verified. In this case, theory predicts that the intensity of gravity waves is no more correlated to background temperature, but to static stability. At other latitudes in the three aerobraking datasets, the GW-induced relative density perturbations are correlated with neither inverse temperature nor static stability; in this particular case, this means that the observed activity of gravity waves is not only controlled by saturation, but also by the effects of gravity-wave sources and wind filtering through critical levels. This result highlights the exceptional nature of MAVEN/NGIMS observations which combine both isothermal and saturated conditions contrary to aerobraking measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.