King George Island is the largest island and the principal area used for research bases in Antarctica. Argentina, Brazil, Chile, China, Poland, Russia, South Korea and Uruguay have permanent open bases on this island. Other countries have seasonal summer stations on different parts of this island, which demonstrates that human impact is strong on King George Island relative to other areas in the maritime and continental Antarctica. The objective of this work was to present a phytosociological approach for ice-free areas of Hennequin Point, eastern coast of Admiralty Bay, King George Island. The study started with the classification and description of the plant communities based primarily on phytosociological and biodiversity data. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The plant communities were described as follows: (1) lichen and moss cushion formation; (2) moss carpet formation; (3) fellfield formation; (4) grass and cushion chamaephyte formation; and (5) Deschampsia Antarctica–lichen formation. Characterizations and distributions of the plant communities are presented on a map at a scale of 1:5000. The plant communities found at Hennequin Point, in general, differ from those found in other areas of the Admiralty Bay region, probably because of the concentration of skua nests in the area and the relief singularities. We conclude by highlighting the importance of the study of plant species found in the ice-free areas of the Antarctic with respect to environmental monitoring and for evaluating global climate and environmental changes
We investigate the plant composition in the Skuas nest at Hennequin Point, located in the Admiralty Bay Area, King George Island, Antarctica. Sample of 61 activity nests were analyzed. 21 plant and lichenized fungi species were found in the nest composition, being the mosses Sanionia uncinata (Hedw.) Loeske and Polytrichastrum alpinum (Hedw.) G. S. Smith the most frequent species found in the Skuas nests. Usnea antarctica Du Rietz was the most frequent lichen and the grass Deschampsia antarctica Desv was the most frequent flowering plant found in the nests. These results contribute for the environmental menagement of the Admiralty Bay area research activities.
, to evaluate the distribution and abundance of mosses and lichens, as well as to describe and map the plant communities there. The quadrat (20 × 20 cm) sampling method was employed in a phytosociological study that aimed to describe these communities. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The number of species totalled 38 bryophytes, 59 lichens, only one flowering plant (Deschampsia antarctica Desv.), and two macroscopic terrestrial algae. Five types of plant communities were identified on the island, as follows: (1) fruticose lichen and moss cushion, (2) moss carpet, (3) muscicolous lichen, (4) crustose lichen and (5) moss turf.
Endophyte biology is a branch of science that contributes to the understanding of the diversity and ecology of microorganisms that live inside plants, fungi, and lichen. Considering that the diversity of endolichenic fungi is little explored, and its phylogenetic relationship with other lifestyles (endophytism and saprotrophism) is still to be explored in detail, this paper presents data on axenic cultures and phylogenetic relationships of three endolichenic fungi, isolated in laboratory. Cladonia curta Ahti & Marcelli, a species of lichen described in Brazil, is distributed at three sites in the Southeast of the country, in mesophilous forests and the Cerrado. Initial hyphal growth of Xylaria spp. on C. curta podetia started four days after inoculation and continued for the next 13 days until the hyphae completely covered the podetia. Stromata formation and differentiation was observed, occurring approximately after one year of isolation and consecutive subculture of lineages. Phylogenetic analyses indicate lineages of endolichenic fungi in the genus Xylaria, even as the morphological characteristics of the colonies and anamorphous stromata confirm this classification. Our preliminary results provide evidence that these endolichenic fungi are closely related to endophytic fungi, suggesting that the associations are not purely incidental. Further studies, especially phylogenetic analyses using robust multi-locus datasets, are needed to accept or reject the hypothesis that endolichenic fungi isolated from Xylaria spp. and X. berteri are conspecific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.