The degradation of laboratory oil paint film specimens containing indigo and Prussian blue pigments and pictorial samples from the Sant Francesc de Paula painting exhibited in the Tomàs Balvey Arxiu Museum (Cardedeu (Catalonia), Spain) has been studied by voltammetry of immobilized particles. This technique, combined with light microscopy, scanning electron microscopy-energy dispersive X-ray analysis, nanoindentation-atomic force microscopy, attenuated total reflectance-Fourier-transform infrared spectroscopy and gas chromatography-mass spectroscopy techniques permits the proposal of a dual scheme for the degradation of the pigments when naturally aged and submitted to accelerated UVA aging. Under conditions of moderate temperature, humidity and natural illumination, and low gradients of these parameters, Prussian blue acts as a radical scavenger moderating the production of reactive oxygen species produced in the oil binding medium by the action of ultraviolet radiation, resulting in the formation, in the solid state, of the solid-solution, {KFe III [Fe II (CN) 6 ]} x {Fe III [Fe III (CN) 6 ]} 1-x , known as Berlin green, which then promotes the formation of indigo adducts with radicals. In several localized areas of the Sant Francesc de Paula paint showing strong degradation, Prussian blue acts as a promoter of the indigo oxidation to isatin, thus resulting in a considerable chromatic shift.
In situ recording of the voltammetric response of Aloe vera L. leaves using graphite and platinum microelectrodes inserted in the subcuticular region is described. The plant response against the mechanical stress results in changes of the voltammetric signals associated to signal transduction compounds salicylic and jasmonic acids and hydrogen peroxide, which were separately monitored. A kinetic model is proposed to describe the time variation of the respective voltammetric signatures, denoting the possibility of in vivo electrochemical monitoring of biochemical processes in plants. The obtained results suggest that two defense pathways with different participation of ROS are operative.
A voltammetric and scanning electrochemical microscopy (SECM) investigation was performed on an inherently chiral oligomer-coated gold electrode to establish its general properties (i.e., conductivity and topography), as well as its ability to discriminate chiral electroactive probe molecules. The electroactive monomer (S)-2,2′-bis(2,2′-bithiophene-5-yl)-3,3′-bibenzothiophene ((S)-BT2T4) was employed as reagent to electrodeposit, by cyclic voltammetry, the inherently chiral oligomer film of (S)-BT2T4 (oligo-(S)-BT2T4) onto the Au electrode surface (resulting in oligo-(S)-BT2T4-Au). SECM measurements, performed in either feedback or competition mode, using the redox mediators [Fe(CN)6]4− and [Fe(CN)6]3− in aqueous solutions, and ferrocene (Fc), (S)-FcEA, (R)-FcEA and rac-FcEA (FcEA is N,N-dimethyl-1-ferrocenylethylamine) in CH3CN solutions, indicated that the oligomer film, as produced, was uncharged. The use of [Fe(CN)6]3− allowed establishing that the oligomer film behaved as a porous insulating membrane, presenting a rather rough surface. This was inferred from both the approach curves and linear and bidimensional SECM scans, which displayed negative feedback effects. The oligomer film acquired semiconducting or fully conducting properties when the Au electrode was biased at potential more positive than 0.6 V vs. Ag|AgCl|KCl. Under the latter conditions, the approach curves displayed positive feedback effects. SECM measurements, performed in competition mode, allowed verifying the discriminating ability of the oligo-(S)-BT2T4 film towards the (S)-FcEA and (R)-FcEA redox mediators, which confirmed the results obtained by cyclic voltammetry. SECM linear scans indicated that the enantiomeric discriminating ability of the oligo-(S)-BT2T4 was even across its entire surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.