This paper investigates the effectiveness of traffic management tools, including traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO 2 , NO x , and black Netw Spat Econ (2017) Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project.
The presented traffic control system (CARBOTRAF) combines realtime monitoring of traffic and air pollution with simulation models for traffic, emission and local air quality predictions to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO 2 emissions and improve air quality by optimizing the traffic flows. A chain of models combines microscopic traffic simulations, emission models and air quality simulations for a range of traffic demand levels and intelligent transport system (ITS) actions. These ITS scenarios simulate combinations of traffic signal optimization plans and variable messaging systems. The real-time decision support system uses these simulations to select the best traffic management in terms of traffic and air quality. In this paper the modelled effects of ITS measures on air quality are analysed with a focus on BC for urban areas in two European cities, Graz and Glasgow.
This paper discusses a case study evaluating the potential impact of ITS traffic management on CO 2 and Black carbon tailpipe emissions. Results are based on extensive microsimulations performed using a calibrated VISSIM model in combination with the AIRE model for calculating the tailpipe emissions from simulated vehicle trajectories. The ITS traffic management options hereby consist of easily implementable actions such as the usage of a variable message sign (VMS) or the setting of fixed time signal plans. Our simulations show that in the current case shifting 5% of vehicles from one route to another one leads to an improvement in terms of emissions only if the VMS is complemented with an adaptation of the signal programs, while the VMS sign or the change of the signal plans alone do not yield benefits. This shows that it is not sufficient to evaluate single actions in a ceteris paribus analysis, but their joint network effects need to be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.