We report on molecular dynamics simulations of the ionic liquid [bmim][BF 4] and its mixtures with water, from zero up to 0.5 mol fraction of water. All of the simulations are carried out with two published force fields. The results are compared with each other and with published as well as new NMR data on the same mixtures, whenever possible. We perform extensive analyses of structural quantities, such as pair correlation functions, nearest-neighbor analysis and size distribution of the water clusters formed at higher concentrations. We show that the water clusters are formed almost exclusively by linear chains of hydrogen-bonded molecules. There is a nanoscale structuring of the mixtures but no macroscopic phase separation among the components, in agreement with experiment. Roughly, we identify two solvation regimes. At low water content, the ions are selectively coordinated by individual water molecules, but their ionic network is largely unperturbed. At high water content, the ionic network is somewhat disrupted or swollen in a nonspecific way by the water clusters.
Room-temperature ionic liquids (RTILs) based on the N-butyl-N-methyl pyrrolidinium cation (PYR(14)(+)) combined with three different fluorinated anions have been prepared and characterized by NMR, conductivity, and rheological measurements. The anions are (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl)imide (IM(14)(-)), bis(pentafluoroethanesulfonyl)imide (BETI(-)), and bis(trifluoromethanesulfonyl)imide (TFSI(-)). Intermolecular anion-cation nuclear Overhauser enhancements (NOEs) have been experimentally observed in all titled compounds. These findings indicate the formation of long-lived aggregates in the bulk liquids. The NOE patterns show marked selectivity and can be rationalized assuming that the perfluorinated moieties of the anions tend to adopt a preferential orientation with respect to the cations, with possible formation of mesoscopic fluorous domains. Self-diffusion coefficients D for the anion and the cation have been measured by DOSY NMR. Diffusion data show similar but not identical values for cation and anion, consistent with local ordering at the molecular level. The observed trend in diffusion coefficients, D(cation) > D(anion) for all compounds, is compatible with a higher degree of intermolecular organization of the anions. This nanoscale organization is connected to rather strong deviations of the experimental conductivities from those estimated from the ion diffusion coefficients through the Nernst-Einstein relationship. The measured viscosities and ion diffusion coefficients in PYR(14)IM(14) and in PYR(14)TFSI have similar temperature dependencies, leading to very close values of the activation energies for these processes. Ab initio density functional calculations on models of a PYR(14)TFSI ion pair lead to the identification of several local minima, whose structure and energy can be qualitatively related to the experimental NOE signals and activation energies.
We present the results of a thorough molecular modeling study of several alkylthiophene-based oligomers and polymers. In particular, we consider two polymers whose limit-ordered crystal structures have been recently reported by our group, on the basis of powder X-ray data analysis: poly(3-(S)-2-methylbutylthiophene) (P3MBT) and form I' of poly(3-butylthiophene) (P3BT). We first describe the development of a series general purpose force fields for the simulation of these and related systems. The force fields incorporate the results of ab initio calculations of the bond torsion energies of selected oligomers and differ in the set of atomic charges used to represent the electrostatic interactions. We then present the results of an extensive validation of these force fields, by means of molecular mechanics (MM) energy minimizations and molecular dynamics (MD) simulations of the crystal structures of these oligomers and polymers. While our "best" force field does not outperform the others on each of the investigated systems, it provides a balanced description of their overall structure and energetics. Finally, our MM minimizations and MD simulations confirm that the reported crystal structures of P3MBT and P3BT are stable and correspond to well-defined energetic minima. The room-temperature MD simulations reveal a certain degree of side-chain disorder, even in our virtually defect-free polymer crystal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.