Summary Parenchymal astrocytes have emerged as a potential reservoir for new neurons in non-neurogenic brain regions. It is currently unclear how astrocyte neurogenesis is controlled molecularly. Here we show that Notch signaling-deficient astrocytes can generate new neurons after injury. Using single-cell RNA sequencing, we found that, when Notch signaling is blocked, astrocytes transition to a neural stem cell-like state. However, only after injury do a few of these primed astrocytes unfold a neurogenic program, including a self-amplifying progenitor-like state. Further, reconstruction of the trajectories of individual cells allowed us to uncouple astrocyte neurogenesis from reactive gliosis, which occur along independent branches. Finally, we show that cortical neurogenesis molecularly recapitulates canonical subventricular zone neurogenesis with remarkable fidelity. Our study supports a widespread potential of parenchymal astrocytes to function as dormant neural stem cells.
Injuries to the central nervous system (CNS) are inefficiently repaired. Resident neural stem cells manifest a limited contribution to cell replacement. We have uncovered a latent potential in neural stem cells to replace large numbers of lost oligodendrocytes in the injured mouse spinal cord. Integrating multimodal single-cell analysis, we found that neural stem cells are in a permissive chromatin state that enables the unfolding of a normally latent gene expression program for oligodendrogenesis after injury. Ectopic expression of the transcription factor OLIG2 unveiled abundant stem cell–derived oligodendrogenesis, which followed the natural progression of oligodendrocyte differentiation, contributed to axon remyelination, and stimulated functional recovery of axon conduction. Recruitment of resident stem cells may thus serve as an alternative to cell transplantation after CNS injury.
Adult neural stem cells, located in discrete brain regions, generate new neurons throughout life. These stem cells are specialized astrocytes, but astrocytes in other brain regions do not generate neurons under physiological conditions. After stroke, however, striatal astrocytes undergo neurogenesis in mice, triggered by decreased Notch signaling. We used single-cell RNA sequencing to characterize neurogenesis by Notch-depleted striatal astrocytes in vivo. Striatal astrocytes were located upstream of neural stem cells in the neuronal lineage. As astrocytes initiated neurogenesis, they became transcriptionally very similar to subventricular zone stem cells, progressing through a near-identical neurogenic program. Surprisingly, in the non-neurogenic cortex, Notch-depleted astrocytes also initiated neurogenesis. Yet, these cortical astrocytes, and many striatal ones, stalled before entering transit-amplifying divisions. Infusion of epidermal growth factor enabled stalled striatal astrocytes to resume neurogenesis. We conclude that parenchymal astrocytes are latent neural stem cells and that targeted interventions can guide them through their neuronal differentiation.
Current methods for epigenomic profiling are limited in their ability to obtain genome-wide information with spatial resolution. We introduce spatial ATAC, a method that integrates transposase-accessible chromatin profiling in tissue sections with barcoded solid-phase capture to perform spatially resolved epigenomics. We show that spatial ATAC enables the discovery of the regulatory programs underlying spatial gene expression during mouse organogenesis, lineage differentiation and in human pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.