Hypoxia is necessary for fetal development; however, excess hypoxia is detrimental. Hypoxia has been extensively studied in the near-term fetus, but less is known about earlier fetal effects. The purpose of this study was to determine the window of vulnerability to severe hypoxia, what organ system(s) is most sensitive, and why hypoxic fetuses die. We induced hypoxia by reducing maternal-inspired O2 from 21% to 8%, which decreased fetal tissue oxygenation assessed by pimonidazole binding. The mouse fetus was most vulnerable in midgestation: 24 h of hypoxia killed 89% of embryonic day 13.5 (E13.5) fetuses, but only 5% of E11.5 and 51% of E17.5 fetuses. Sublethal hypoxia at E12.5 caused growth restriction, reducing fetal weight by 26% and protein by 45%. Hypoxia induced HIF-1 target genes, including vascular endothelial growth factor (Vegf), erythropoietin, glucose transporter-1 and insulin-like growth factor binding protein-1 (Igfbp-1), which has been implicated in human intrauterine growth restriction (IUGR). Hypoxia severely compromised the cardiovascular system. Signs of heart failure, including loss of yolk sac circulation, hemorrhage, and edema, were caused by 18-24 h of hypoxia. Hypoxia induced ventricular dilation and myocardial hypoplasia, decreasing ventricular tissue by 50% and proliferation by 21% in vivo and by 40% in isolated cultured hearts. Epicardial detachment was the first sign of hypoxic damage in the heart, although expression of epicardially derived mitogens, such as FGF2, FGF9, and Wnt9b was not reduced. We propose that hypoxia compromises the fetus through myocardial hypoplasia and reduced heart rate.
Objective: To describe the time elapsed from onset of pediatric convulsive status epilepticus (SE) to administration of antiepileptic drug (AED).Methods: This was a prospective observational cohort study performed from June 2011 to June 2013. Pediatric patients (1 month-21 years) with convulsive SE were enrolled. In order to study timing of AED administration during all stages of SE, we restricted our study population to patients who failed 2 or more AED classes or needed continuous infusions to terminate convulsive SE. Results:We enrolled 81 patients (44 male) with a median age of 3.6 years. The first, second, and third AED doses were administered at a median (p 25 -p 75 ) time of 28 (6-67) minutes, 40 (20-85) minutes, and 59 (30-120) minutes after SE onset. Considering AED classes, the initial AED was a benzodiazepine in 78 (96.3%) patients and 2 (2-3) doses of benzodiazepines were administered before switching to nonbenzodiazepine AEDs. The first and second doses of nonbenzodiazepine AEDs were administered at 69 (40-120) minutes and 120 (75-296) minutes. In the 64 patients with out-of-hospital SE onset, 40 (62.5%) patients did not receive any AED before hospital arrival. In the hospital setting, the first and second in-hospital AED doses were given at 8 (5-15) minutes and 16 (10-40) minutes after SE onset (for patients with in-hospital SE onset) or after hospital arrival (for patients with out-of-hospital SE onset). Conclusions:The time elapsed from SE onset to AED administration and escalation from one class of AED to another is delayed, both in the prehospital and in-hospital settings. Status epilepticus (SE) is one of the most common pediatric neurologic emergencies.1 It has a mortality of 0%-3% 2-7 and morbidity that includes cognitive and neurodevelopmental impairments, epilepsy, and recurrent SE.2,8-10 SE is often refractory to the initial antiepileptic drugs (AEDs), 11,12 and refractory SE is associated with poor outcome. 12 Patient age, etiology, and SE duration all affect outcome, 5,9,13 but only SE duration is a potentially modifiable factor by rapid AED treatment. By convention, the treatment of convulsive SE is a sequence of AEDs, typically
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.