Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models.
Background Medical errors in blood product orders and administration are common, especially for pediatric patients. A failure modes and effects analysis in our health care system indicated high risk from the electronic blood ordering process. Objectives There are two objectives of this study as follows:(1) To describe differences in the design of the original blood product orders and order sets in the system (original design), new orders and order sets designed by expert committee (DEC), and a third-version developed through user-centered design (UCD).(2) To compare the number and type of ordering errors, task completion rates, time on task, and user preferences between the original design and that developed via UCD. Methods A multidisciplinary expert committee proposed adjustments to existing blood product order sets resulting in the DEC order set. When that order set was tested with front-line users, persistent failure modes were detected, so orders and order sets were redesigned again via formative usability testing. Front-line users in their native clinical workspaces were observed ordering blood in realistic simulated scenarios using a think-aloud protocol. Iterative adjustments were made between participants. In summative testing, participants were randomized to use the original design or UCD for five simulated scenarios. We evaluated differences in ordering errors, time on task, and users' design preference with two-sample t-tests. Results Formative usability testing with 27 providers from seven specialties led to 18 changes made to the DEC to produce the UCD. In summative testing, error-free task completion for the original design was 36%, which increased to 66% in UCD (30%, 95% confidence interval [CI]: 3.9–57%; p = 0.03). Time on task did not vary significantly. Conclusion UCD led to substantially different blood product orders and order sets than DEC. Users made fewer errors when ordering blood products for pediatric patients in simulated scenarios when using the UCD orders and order sets compared with the original design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.