Because bacterial surface glycans are in direct contact with the environment they can provide essential protective functions during infections or against competing bacteria. But such structures are also “Achilles’ heels” since they can serve as primary receptors for bacteriophages.
Bacteriophages are ubiquitous parasites of bacteria and major drivers of bacterial ecology and evolution. Despite an ever-growing interest in their biotechnological and therapeutic applications, detailed knowledge of the molecular mechanisms underlying phage-host interactions remains scarce. Here, we show that bacteriophage N4 exploits a novel surface glycan, NGR, as a receptor to infect its host Escherichia coli. We demonstrate that this process is regulated by the second messenger c-di-GMP and that N4 infection is specifically stimulated by the diguanylate cyclase DgcJ while the phosphodiesterase PdeL effectively protects E. coli from N4-mediated killing. PdeL-mediated protection requires its catalytic activity to reduce c-di-GMP and includes a secondary role as a transcriptional repressor. We demonstrate that PdeL binds to and represses the promoter of the wec operon, which encodes components of the ECA exopolysaccharide pathway. However, only the acetylglucosamine epimerase WecB but none of the other ECA components is required for N4 infection. Based on this, we postulate that NGR is an N-acetylmannosamine-based carbohydrate polymer that is produced and exported to the cell surface of E. coli in a c-di-GMP dependent manner where it serves as a receptor for N4. This novel carbohydrate pathway is conserved in E. coli and other bacterial pathogens, serves as the primary receptor for a range of N4-like bacteriophages, and is induced at elevated temperature and by specific amino acid-based nutrients. These studies provide an entry point into understanding how bacteria use specific regulatory mechanisms to balance costs and benefits of highly conserved surface structures.
Nucleotide-based signaling molecules (NSMs) are widespread in bacteria and eukaryotes, where they control important physiological and behavioral processes. In bacteria, NSM-based regulatory networks are highly complex, entailing large numbers of enzymes involved in the synthesis and degradation of active signaling molecules. How the converging input from multiple enzymes is transformed into robust and unambiguous cellular responses has remained unclear. Here we show that Escherichia coli converts dynamic changes of c-di-GMP into discrete binary signaling states, thereby generating heterogeneous populations with either high or low c-di-GMP. This is mediated by an ultrasensitive switch protein, PdeL, which senses the prevailing cellular concentration of the signaling molecule and couples this information to c-di-GMP degradation and transcription feedback boosting its own expression. We demonstrate that PdeL acts as a digital filter that facilitates precise developmental transitions, confers cellular memory, and generates functional heterogeneity in bacterial populations to evade phage predation. Based on our findings, we propose that bacteria apply ultrasensitive regulatory switches to convert dynamic changes of NSMs into binary signaling modes to allow robust decision-making and bet-hedging for improved overall population fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.