The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor approach to obtain insight into the binding site of the allosteric antagonists and additionally introduced eight single point mutations in CCR2 to further characterize the putative binding pocket. All constructs were studied in radioligand binding and/or functional IP turnover assays, providing evidence for an intracellular binding site for CCR2-RA-[R], JNJ-27141491, and SD-24. For CCR2-RA-[R] the most important residues for binding were found to be the highly conserved tyrosine Y 7.53 and phenylalanine F 8.50 of the NPxxYx (5,6) F motif, as well as V 6.36 at the bottom of TM-VI and K 8.49 in helix-VIII. These findings demonstrate for the first time the presence of an allosteric intracellular binding site for CCR2 antagonists. This contributes to an increased understanding of the interactions of diverse ligands at CCR2 and may allow for a more rational design of future allosteric antagonists.
The
recent crystal structures of CC chemokine receptors 2 and 9
(CCR2 and CCR9) have provided structural evidence for an allosteric,
intracellular binding site. The high conservation of residues involved
in this site suggests its presence in most chemokine receptors, including
the close homologue CCR1. By using [3H]CCR2-RA-[R], a high-affinity, CCR2 intracellular ligand, we report
an intracellular binding site in CCR1, where this radioligand also
binds with high affinity. In addition, we report the synthesis and
biological characterization of a series of pyrrolone derivatives for
CCR1 and CCR2, which allowed us to identify several high-affinity
intracellular ligands, including selective and potential multitarget
antagonists. Evaluation of selected compounds in a functional [35S]GTPγS assay revealed that they act as inverse agonists
in CCR1, providing a new manner of pharmacological modulation. Thus,
this intracellular binding site enables the design of selective and
multitarget inhibitors as a novel therapeutic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.