Expression of genes in eukaryotes has commonly been analyzed in a whole tissue, and levels ofexpression have been interpreted as the result of equivalent rates of transcription in every cell. We have produced transgenic mouse lines that express 18-galactosidase under the control of globin promoters linked to the major tissue-specific regulatory element of the a-globin locus, which permits the analysis of transgene expression in individual red blood cells. We find that expression of the transgene within all mouse lines is heterocellular. Individual cells either do not express the transgene at all or express it at a level characteristic of that line. The number of 18-galactosidase-expressing cells varies greatly between different lines of transgenic mice at any defined stage of development, but within a transgenic line, individual mice have strikingly similar numbers of expressing cells. This suggests that the degree of heterocellular expression is determined by the site of integration, as is seen in position-effect variegation.
Epigenetic modifications that suppress gene activity in mammals are generally considered to be cleared in the germline, restoring totipotency of the genome. Here we report the germline inheritance of transcriptional silencing in mice, and reversion to activity after as many as three generations in the silent state. In a series of lines made with a LacZ transgene, one line exhibits variable expressivity: genotypically identical littermates have proportions of beta-Gal-positive erythrocytes that vary over at least four orders of magnitude, and in some offspring expression is completely silenced. The silent state of the transgene is inherited for multiple generations in the founder strain irrespective of the sex of the parent, implying maintenance of the epigenetic state through meiosis. Crosses of silenced mice with C57BL/6 mice result in reactivation of the transgene in approximately a third of F(1) littermates. The silencing involves a stochastic, all-or-none mechanism. Furthermore, silencing is transcriptional and correlates with methylation of the transgene as well as an inaccessible chromatin structure; these changes are reversed when expression is reactivated. This work supports the notion that silent genetic information in mammals can be inherited and later reactivated, and implies a mode of phenotypic inheritance that is less stable than Mendelian inheritance.
Here we report a transgenic mouse line that exhibits significant deviations from a classic pattern of parental imprinting. When the transgene is passed through the female germline, it is completely silenced in some offspring while in others expression is reduced. This variable expressivity does not appear to be the result of differences in the presence of unlinked modifiers. Female transmission of the transgene is associated with hypermethylation. The transgene is generally reactivated on passage through the male germline. Extended pedigrees reveal complex patterns of inheritance of the phenotype. The most likely explanation for this result is that the imprint is not completely erased and reset when passed through the germline of either sex. FISH analysis reveals that the transgene has integrated into chromosome 3 band E3, a region not known to carry imprinted genes, and the integration site shows no sign of allele-specific differential methylation. These findings, in conjunction with other recent
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.