High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database compiled by the US National Cancer Institute, which has been extensively characterized across numerous genomic and pharmacological response platforms. In this report we introduce a CellMiner1 web application designed to improve use of this extensive database. CellMiner tools allowed rapid data retrieval of transcripts for 22,217 genes and 360 microRNAs along with activity reports for 18,549 chemical compounds including 91 drugs approved by the US Food and Drug Administration. Converting these differential levels into quantitative patterns across the NCI-60 clarified data organization and cross comparisons using a novel pattern-match tool. Data queries for potential relationships among parameters can be conducted in an iterative manner specific to user interests and expertise. Examples of the in silico discovery process afforded by CellMiner were provided for multidrug resistance analyses and doxorubicin activity; identification of colon-specific genes, microRNAs and drugs; microRNAs related to the miR-17-92 cluster; and drug identification patterns matched to erlotinib, gefitinib, afatinib, and lapatinib. CellMiner greatly broadens applications of the extensive NCI-60 database for discovery by creating web-based processes that are rapid, flexible, and readily applied by users without bioinformatics expertise.
BioPAX (Biological Pathway Exchange) is a standard language to represent biological pathways at the molecular and cellular level. Its major use is to facilitate the exchange of pathway data (http://www.biopax.org). Pathway data captures our understanding of biological processes, but its rapid growth necessitates development of databases and computational tools to aid interpretation. However, the current fragmentation of pathway information across many databases with incompatible formats presents barriers to its effective use. BioPAX solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. BioPAX was created through a community process. Through BioPAX, millions of interactions organized into thousands of pathways across many organisms, from a growing number of sources, are available. Thus, large amounts of pathway data are available in a computable form to support visualization, analysis and biological discovery.
We have developed GoMiner, a program package that organizes lists of 'interesting' genes (for example, under-and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. GoMiner provides quantitative and statistical output files and two useful visualizations. The first is a tree-like structure analogous to that in the AmiGO browser and the second is a compact, dynamically interactive 'directed acyclic graph'. Genes displayed in GoMiner are linked to major public bioinformatics resources. RationaleGene-expression profiling and other forms of high-throughput genomic and proteomic studies are revolutionizing biology. That much is universally agreed. But the new technologies pose new challenges. The first is the experiment itself, the second is statistical analysis of results, the third is biological interpretation. That third challenge is often the most vexing and time-consuming. In gene-expression microarray studies, for example, one generally obtains a list of dozens or hundreds of genes that differ in expression between samples and then asks: 'What does all of this mean biologically?' The work of the Gene Ontology (GO) Consortium [1] provides a way to address that question. GO organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. In the past, this GO information was queried one gene at a time. Recently, batch processing has been introduced [2], but with a flat-format output that does not communicate the richness of GO's hierarchical structure.We have developed, and present here, the program package GoMiner as a freely available computer resource that fully incorporates the hierarchical structure of the Gene Ontology to automate the functional categorization of gene lists of any length. GoMiner is downloadable free of charge from [3] or [4]. GoMiner was developed particularly for biological interpretation of microarray data; one can input a list of underand overexpressed genes and a list of all genes on the array, and then calculate enrichment or depletion of categories with genes that have changed expression. GoMiner thus facilitates analysis and organization of the results for rapid interpretation of 'omic' [5,6] data. For concreteness, the descriptions in
Background: Advances in the high-throughput omic technologies have made it possible to profile cells in a large number of ways at the DNA, RNA, protein, chromosomal, functional, and pharmacological levels. A persistent problem is that some classes of molecular data are labeled with gene identifiers, others with transcript or protein identifiers, and still others with chromosomal locations. What has lagged behind is the ability to integrate the resulting data to uncover complex relationships and patterns. Those issues are reflected in full form by molecular profile data on the panel of 60 diverse human cancer cell lines (the NCI-60) used since 1990 by the U.S. National Cancer Institute to screen compounds for anticancer activity. To our knowledge, CellMiner is the first online database resource for integration of the diverse molecular types of NCI-60 and related meta data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.