Low bone mineral density (BMD) is used as a parameter of osteoporosis. Genome-wide association studies of BMD have hitherto focused on BMD as a quantitative trait, yielding common variants of small effects that contribute to the population diversity in BMD. Here we use BMD as a dichotomous trait, searching for variants that may have a direct effect on the risk of pathologically low BMD rather than on the regulation of BMD in the healthy population. Through whole-genome sequencing of Icelandic individuals, we found a rare nonsense mutation within the leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) gene (c.376C>T) that is strongly associated with low BMD, and with osteoporotic fractures. This mutation leads to termination of LGR4 at position 126 and fully disrupts its function. The c.376C>T mutation is also associated with electrolyte imbalance, late onset of menarche and reduced testosterone levels, as well as an increased risk of squamous cell carcinoma of the skin and biliary tract cancer. Interestingly, the phenotype of carriers of the c.376C>T mutation overlaps that of Lgr4 mutant mice.
Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect non-coding regions. A single nucleotide polymorphism (SNP) within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue eyes and brown hair color. Here we demonstrate that this SNP lies within an enhancer of IRF4 transcription in melanocytes. The allele associated with this pigmentation phenotype impairs binding of the TFAP2A transcription factor which together with the melanocyte master regulator MITF, regulates activity of the enhancer. Assays in zebrafish and mice reveal that IRF4 cooperates with MITF to activate expression of Tyrosinase (TYR), an essential enzyme in melanin synthesis. Our findings provide a clear example of a non-coding polymorphism that affects a phenotype by modulating a developmental gene regulatory network.
The mechanistic Target Of Rapamycin Complex 1 (mTORC1) is recruited to the lysosome by Rag GTPases and regulates anabolic pathways in response to nutrients. Here we find that MiT/TFE transcription factors, master regulators of lysosomal and melanosomal biogenesis and autophagy, control mTORC1 lysosomal recruitment and activity by directly regulating the expression of RagD. In mice this mechanism mediated adaptation to food availability after starvation and physical exercise and played an important role in cancer growth. Up-regulation of MiT/TFE genes in cells and tissues from patients and murine models of renal cell carcinoma, pancreatic ductal adenocarcinoma, and melanoma triggered RagD-mediated mTORC1 induction, resulting in cell hyper-proliferation and cancer growth. Thus, this transcriptional regulatory mechanism enables cellular adaptation to nutrient availability and supports the energy-demanding metabolism of cancer cells.
The PI3-kinase (PI3K)/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signalling cascades promote normal growth and are frequently hyperactivated in tumour cells. mTORC1 is also regulated by local nutrients, particularly amino acids, but the mechanisms involved are poorly understood. Unexpectedly, members of the proton-assisted amino acid transporter (PAT or SLC36) family emerged from in vivo genetic screens in Drosophila as transporters with uniquely potent effects on mTORC1-mediated growth. Here we show the two human PATs that are widely expressed in normal tissues and cancer cell lines, PAT1 and PAT4, behave similarly to fly PATs when expressed in Drosophila. siRNA knockdown reveals that these molecules are required for activation of mTORC1 targets and for proliferation in human MCF-7 breast cancer and HEK-293 embryonic kidney cell lines. Furthermore, activation of mTORC1 in starved HEK-293 cells stimulated by amino acids requires PAT1 and PAT4, and is elevated in PAT1-overexpressing cells. Importantly, in HEK-293 cells, PAT1 is highly concentrated in intracellular compartments, including endosomes, where mTOR shuttles upon amino acid stimulation. Our data are therefore consistent with a model in which PATs modulate mTORC1's activity not by transporting amino acids into the cell, but by modulating the intracellular response to amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.