BackgroundForests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions.ResultsWe simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management.ConclusionsThe inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.
A better understanding of deforestation drivers across countries and spatial scales is a precondition for designing efficient international policies and coherent land use planning strategies such as REDD+. However, it is so far unclear if the well-studied drivers of tropical deforestation behave similarly across nested subnational jurisdictions, which is crucial for efficient policy implementation. We selected three countries in Africa, America and Asia, which present very different tropical contexts. Making use of spatial econometrics and a multi-level approach, we conducted a set of regressions comprising 3,035 administrative units from the three countries at micro-level, plus 361 and 49 at meso-and macro-level, respectively. We included forest cover as dependent variable and seven physio-geographic and socioeconomic indicators of well-known drivers of deforestation as explanatory variables. With this, we could provide a first set of highly significant econometric models of pantropical deforestation that consider subnational units. We identified recurrent drivers across countries and scales, namely population pressure and the natural condition of land suitability for crop production. The impacts of demography on forest cover were strikingly strong across contexts, suggesting clear limitations of sectoral policy. Our findings also revealed scale and context dependencies, such as an increased heterogeneity at local scopes, with a higher and more diverse number of significant determinants of forest cover. Additionally, we detected stronger spatial interactions at smaller levels, providing empirical evidence that certain deforestation forces occur independently of the existing de jure governance boundaries. We demonstrated that neglecting spatial dependencies in this type of studies can lead to several misinterpretations. We therefore advocate, that the design and enforcement of policy instruments-such as REDD+-should start from common international entry points that ensure for coherent agricultural and demographic policies. In order to achieve a longterm impact on the ground, these policies need to have enough flexibility to be modified and adapted to specific national, regional or local conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.