In this paper we present an overview of agentbased models that are used to simulate mechanical and physiological phenomena in cells and tissues, and we discuss underlying concepts, limitations, and future perspectives of these models. As the interest in cell and tissue mechanics increase, agent-based models are becoming more common the modeling community. We overview the physical aspects, complexity, shortcomings, and capabilities of the major agent-based model categories: lattice-based models (cellular automata, lattice gas cellular automata, cellular Potts models), off-lattice models (center-based models, deformable cell models, vertex models), and hybrid discrete-continuum models. In this way, we hope to assist future researchers in choosing a model for the phenomenon they want to model and understand. The article also contains some novel results.
Highlights d T cell clusters are communication hubs for coordination of population dynamics d T cells can regulate their own population dynamics akin to quorum regulation d T cell quorum regulation incorporates two nested antagonistic feedback circuits d Loop dominance of feedback circuits is controlled by local T cell density
Recent experimental and theoretical studies suggest that crystallization and glass-like solidification are useful analogies for understanding cell ordering in confluent biological tissues. It remains unexplored how cellular ordering contributes to pattern formation during morphogenesis. With a computational model we show that a system of elongated, cohering biological cells can get dynamically arrested in a network pattern. Our model provides a new explanation for the formation of cellular networks in culture systems that exclude intercellular interaction via chemotaxis or mechanical traction.
Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existing computational model of vascular network formation based on the cellular Potts model with tip and stalk differentiation, without making a priori assumptions about the differences between tip cells and stalk cells. To predict potential differences, we looked for parameter values that make tip cells (a) move to the sprout tip, and (b) change the morphology of the angiogenic networks. The screening predicted that if tip cells respond less effectively to an endothelial chemoattractant than stalk cells, they move to the tips of the sprouts, which impacts the morphology of the networks. A comparison of this model prediction with genes expressed differentially in tip and stalk cells revealed that the endothelial chemoattractant Apelin and its receptor APJ may match the model prediction. To test the model prediction we inhibited Apelin signaling in our model and in an in vitro model of angiogenic sprouting, and found that in both cases inhibition of Apelin or of its receptor APJ reduces sprouting. Based on the prediction of the computational model, we propose that the differential expression of Apelin and APJ yields a “self-generated” gradient mechanisms that accelerates the extension of the sprout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.