In Arabidopsis thaliana cell cultures, the peptaibol alamethicin induced a form of active cell death that was associated with cell shrinkage and DNA fragmentation. The transfer of mature A. thaliana plants from a peptide-free medium to a medium containing a moderate concentration of alamethicin caused the development of lesions in leaves after a few days. These lesions were characterized by cell death, deposition of callose, production of autofluorescent phenolic compounds, and transcription of defense genes, just like in the hypersensitive response to a pathogen attack. The induction of defense-like responses in Arabidopsis by other membrane-disrupting peptides was also evaluated. The peptides selected for comparison included the natural antimicrobial melittin and the peptaibol ampullosporin A, as well as synthetic analogues of the peptaibols cervinin and trichogin. The response amplitude in A. thaliana increased with the peptaibol's ability to permeabilize biological membranes through a pore-forming mechanism and was strongly associated with their content in the helicogenic α-aminoisobutyric acid residue.
Ampullosporin A is an antimicrobial, neuroleptic peptaibol, the behavior of which was investigated in different membrane mimetic environments made of egg yolk L-α-phosphatidylcholine. In monolayers, the peptaibol adopted a mixed α/310-helical structure with an in-plane orientation. The binding step was followed by the peptide insertion into the lipid monolayer core. The relevance of the inner lipid leaflet nature was studied by comparing ampullosporin binding on a hybrid bilayer, in which this leaflet was a rigid alkane layer, and on supported fluid lipid bilayers. The membrane binding was examined by surface plasmon resonance spectroscopy and the effect on lipid dynamics was explored using fluorescence recovery after photobleaching. In the absence of voltage and at low concentration, ampullosporin A substantially adsorbed onto lipid surfaces and its interaction with biomimetic models was strongly modified depending on the inner leaflet structure. At high concentration, ampullosporin A addition led to the lipid bilayers disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.