Summary: Female reproductive hormones are consid ered to be protective agents in atherosclerotic vascular disease and stroke. The present study determined if there are unique cerebrovascular responses in female animals to global cerebral ischemia and if 17J3-estradiol is impor tant to postischemic outcome in brain. Three groups of anesthetized, sexually mature rabbits were treated with normotensive four-vessel occlusion (6 min) and 3 h of reperfusion: females chronically instrumented with 1713-estradiol implants (EFEM; n = 8, plasma estradiol level = 365 ± 48 pg/ml), untreated females (FEM; n = 8, estradiol = 13 ± 3 pg/ml), and untreated males (M; n = 8, estradiol < limit of radioimmunoassay). CBF (micro spheres) and somatosensory evoked potential (SEP) am plitude were measured during ischemia/reperfusion. Baseline hemispheric blood flow and regional flow distri-The incidence of atherosclerotic vascular disease in premenopausal women is less than in men, but this difference disappears after menopause (Bush and Miller, 1987; Wolf et aI., 1987; Barrett-Connor and Bush, 199 1; Sivenius et aI. , 199 1). These obser vations have historically been interpreted as evi dence that female reproductive hormones confer vascular protection in ischemic heart disease and stroke. However, it is unclear if estrogen per se is critical to stroke risk or by what mechanism protec tion is achieved. Further, the presence of vascular responses unique to the female in an ongoing cere- 666bution were not altered by chronic estradiol treatment. Hemispheric blood flow was equivalently reduced during ischemia in FEM and M (6 ± 1 and 9 ± 2 ml min -I 100 g-I, respectively); however postischemic hyperemia was greater in FEM than M (CBF = 25 7 ± 27 and 18 3 ± 27 ml min -1 100 g -I. However, EFEM experienced higher CBF during ischemia (e.g., 13 ± 2ml min-1100 g-l) and less hyperemia (134 ± 4 ml min -I 100 g-I in hemi spheres) in numerous brain regions than FEM. CBF at 3 h reperfusion was not different among the groups. Recov ery of SEPs was incomplete and similar in all groups. We conclude that chronic exogenous 17J3-estradiol treatment increases CBF during global incomplete ischemia and ameliorates postischemic hyperemia in the female animal.
Male sex is an acknowledged risk factor for many forms of cardiovascular disease, and vascular disease prevalence patterns appear to be different in men versus women. The vascular properties of the principal mammalian androgen, testosterone, are complex and linked to dose, duration of exposure, presence of underlying vascular disease, and, possibly, biological sex. Data from isolated vessels and animal models suggest that pharmacological doses of testosterone, or its potent intracellular metabolite dihydrotestosterone, produce vasodilation. Testosterone's major effect on vascular beds at physiologic concentrations remains unclear, with documentation of both vasodilatory and vasoconstrictive actions. Results of various studies suggest that testosterone can alter vascular tone through both endothelium-dependent and endothelium-independent mechanisms in a variety of vascular beds and vessel types. Testosterone's endothelium-dependent effects are likely mediated at least in part through nitric oxide (NO) elaboration, whereas mechanisms of endothelium-independent effects involve 1 or more types of smooth muscle ion conductance channels. Data from clinical studies indicate that, in men, androgen replacement may provide beneficial effects when coronary artery disease is present. Conversely, in women, testosterone may augment existing hypertension, increase risk for cardiovascular events, or promote atherogenesis. However, it should be emphasized that most of these observations are anecdotal or come from small-scale clinical studies, and limited information is available in women. New research is required to understand the potential efficacy of androgen therapy, or lack thereof. This review focuses on current understanding of testosterone's physiological effects on vascular behavior and of testosterone's putative role in vascular health and disease.
Estrogen protects the brain from experimental cerebral ischemia, likely through both vascular and neuronal cellular mechanisms. The purpose of this study was to determine whether chronic estrogen treatment in males and repletion in ovariectomized (Ovx) females reverses abnormalities in pial arteriolar reactivity during reperfusion from global forebrain ischemia (4-vessel occlusion, 15 min) and whether the site of protection is vascular endothelium. Male and Ovx female rats were implanted with either placebo or a 25-μg 17β-estradiol pellet 10 days before ischemia. With the use of intravital microscopy, pial vessel dilation to ACh (10 μM) and S-nitroso- N-acetyl-penicillamine (SNAP; 1 μM) and vasoconstriction to serotonin (10 μM) was examined in situ at 30–60 min of reperfusion. Postischemic changes in vessel diameter were compared with preischemic values for each agent. Postischemic response to both ACh and SNAP was lost in males and Ovx females, but not in estrogen pellet-implanted males and estrogen-implanted Ovx females, suggesting that estrogen protects both endothelial and smooth muscle-mediated vasodilation. Ischemia blunted vessel constriction to serotonin regardless of treatment. These data demonstrate that estrogen acts as a vasoprotective agent within the cerebral circulation and can improve microvascular function under conditions of an acutely evolving ischemic pathology.
Recent data from the Women's Health Initiative have highlighted many fundamental issues about the utility and safety of long-term estrogen use in women. Current hormone replacement therapy for postmenopausal women incorporates progestin with estrogen, but it is uncertain if combined therapy provides major cerebrovascular risks or benefits to these women. No experimental animal stroke studies have examined combined hormone administration. The authors tested the hypothesis that combined hormone treatment reduces ischemic injury in middle-aged female rat brain. Reproductively senescent female rats underwent 2-hour middle cerebral artery occlusion (MCAO) followed by 22 hours reperfusion. Estrogen implants were placed subcutaneously at least 7 days before MCAO, and progesterone intraperitoneal injections were given 30 minutes before MCAO, at initiation, and at 6 hours of reperfusion. Rats received no hormone, a 25-microg estrogen implant, a 25-microg estrogen implant plus 5 mg/kg intraperitoneal progesterone, or 5 mg/kg intraperitoneal progesterone. Cortical, caudoputamen, and total infarct volumes were assessed by 2,3,5-triphenyltetrazolium chloride staining and digital image analysis at 22 hours reperfusion. Cortical and total infarct volumes, except in the acute progesterone-treated group, were significantly attenuated in all estrogen-alone and combined hormone-treated groups. There were no significant differences in caudoputamen infarct volumes in all hormone-treated groups as compared with untreated rats. These data have potential clinical implications relative to stroke for postmenopausal women taking combined hormone replacement therapy.
Although progesterone is neuroprotective in traumatic brain injury, its efficacy in stroke is unclear. The authors determined whether there are infarction differences after middle cerebral artery occlusion (MCAO) in ovariectomized rats treated acutely with progesterone before MCAO or both pre- and postischemia. Rats received vehicle, 5 (P5), 10 (P10), or 20 (P20) mg/kg progesterone intraperitoneally 30 minutes before MCAO. In another cohort, animals received vehicle or 5 (P5R) mg/kg progesterone intraperitoneally 30 minutes before MCAO, at reperfusion initiation, and at 6-hour reperfusion. Animals underwent 2-hour MCAO by the intraluminal filament technique, followed by 22-hour reperfusion. Cortical (CTX) and caudate-putamen (CP) infarctions were determined by 2,3,5-triphenyltetrazolium chloride staining and digital image analysis. End-ischemic and early reperfusion regional cerebral blood flow (CBF) was measured by [ C]-iodoantipyrine quantitative autoradiography in vehicle- or progesterone (5 mg/kg)-treated rats. Cortical infarction (% contralateral CTX) was 31 +/- 30% (vehicle), 39 +/- 23% (P5), 41 +/- 14% (P10), and 28 +/- 20% (P20). Caudate-putamen infarction (% contralateral CP) was 45 +/- 37% (vehicle), 62 +/- 34% (P5), 75 +/- 17% (P10), and 52 +/- 30% (P20). In vehicle and P5R groups, CTX infarction was 37 +/- 20% and *20 +/- 17%, respectively (* < 0.05 from vehicle). In vehicle and P5R groups, CP infarction was 63 +/- 26% and 43 +/- 29%, respectively. End-ischemic regional CBF and CBF recovery during initial reperfusion was unaffected by progesterone treatment. These data suggest that progesterone administration both before MCAO and during reperfusion decreases ischemic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.