It is important that chromosomes are duplicated only once per cell cycle. Over-replication is prevented by multiple mechanisms that block the reformation of a pre-replicative complex (pre-RC) onto origins in S and G2 phase. We have investigated the developmental regulation of Double-parked (Dup) protein, the Drosophila ortholog of Cdt1, a conserved and essential pre-RC component found in human and other organisms. We find that phosphorylation and degradation of Dup protein at G1/S requires cyclin E/CDK2. The N terminus of Dup, which contains ten potential CDK phosphorylation sites, is necessary and sufficient for Dup degradation during S phase of mitotic cycles and endocycles. Mutation of these ten phosphorylation sites, however, only partially stabilizes the protein,suggesting that multiple mechanisms ensure Dup degradation. This regulation is important because increased Dup protein is sufficient to induce profound rereplication and death of developing cells. Mis-expression has different effects on genomic replication than on developmental amplification from chorion origins. The C terminus alone has no effect on genomic replication,but it is better than full-length protein at stimulating amplification. Mutation of the Dup CDK sites increases genomic re-replication, but is dominant negative for amplification. These two results suggest that phosphorylation regulates Dup activity differently during these developmentally specific types of DNA replication. Moreover, the ability of the CDK site mutant to rapidly inhibit BrdU incorporation suggests that Dup is required for fork elongation during amplification. In the context of findings from human and other cells, our results indicate that stringent regulation of Dup protein is critical to protect genome integrity.
The regulation of a pre-replicative complex (pre-RC) at origins ensures that the genome is replicated only once per cell cycle. Cdt1 is an essential component of the pre-RC that is rapidly degraded at G1-S and also inhibited by Geminin (Gem) protein to prevent re-replication. We have previously shown that destruction of the Drosophila homolog of Cdt1, Double-parked (Dup), at G1-S is dependent upon cyclin-E/CDK2 and important to prevent re-replication and cell death. Dup is phosphorylated by cyclin-E/Cdk2, but this direct phosphorylation was not sufficient to explain the rapid destruction of Dup at G1-S. Here, we present evidence that it is DNA replication itself that triggers rapid Dup destruction. We find that a range of defects in DNA replication stabilize Dup protein and that this stabilization is not dependent on ATM/ATR checkpoint kinases. This response to replication stress was cell-type specific, with neuroblast stem cells of the larval brain having the largest increase in Dup protein. Defects at different steps in replication also increased Dup protein during an S-phase-like amplification cell cycle in the ovary, suggesting that Dup stabilization is sensitive to DNA replication and not an indirect consequence of a cell-cycle arrest. Finally, we find that cells with high levels of Dup also have elevated levels of Gem protein. We propose that, in cycling cells, Dup destruction is coupled to DNA replication and that increased levels of Gem balance elevated Dup levels to prevent pre-RC reformation when Dup degradation fails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.