The study suggests that increased collagen orientation angle during OA primarily impairs the collagen network and the tensile stiffness of cartilage in a strain-dependent manner, while the decreased collagen content in OA facilitates fluid flow out of the tissue especially at high compressive strains. Thus, the results provide interesting and important information of the structure-function relationships of human hip joint cartilage and mechanisms during the progression of OA.
In vitro glycation alters the biomechanical response of chondrocytes in cartilage differently in upper and deeper zones, offering possible insights into how aging could alter cell deformation behavior in cartilage.
Volume and morphology of chondrocytes in osteoarthritic human hip joint articular cartilage were characterized, and their relationship to tissue structure and function was determined. Human osteochondral articular cartilage samples (n=16) were obtained from the femoral heads of nine patients undergoing total hip arthroplasty due to osteoarthritis (OA). Superficial chondrocytes (N=65) were imaged in situ with a confocal laser scanning microscope at 37 °C. This was followed by the determination of the mechanical properties of the tissue samples, depth-wise characterization of cell morphology (height, width; N=385) as well as structure and composition of the tissues using light microscopy, digital densitometry, Fourier transform infrared microspectroscopy and polarized light microscopy. Significant correlations were found between the cell volume and the orientation angle associated with the collagen fibers (r=0.320, p=0.009) as well as between the cell volume and the initial dynamic modulus of the tissue (r=-0.305, p=0.013). Furthermore, the depth-dependent chondrocyte aspect ratio (height/width) correlated significantly with the orientation angle of the collagen fibers and with the tissue's proteoglycan content (r=0.261 and r=0.228, respectively, p<0.001). Our findings suggest that the orientation angle of the collagen fibers primarily controls chondrocyte volume and shape in osteoarthritic human hip joint articular cartilage.
Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell’s mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca2+) or in Dulbecco’s modified Eagle’s medium (DMEM, with glucose and Ca2+), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.