Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter. Soils with high micro-bial activity may experience N immobilization (or reduced net N mineralization), and this issue remains unresolved in how to predict these conditions of net mineralization or net immobilization. Prediction may become possible with the use of a more sensitive method to determine soil C:N ratios stemming from the water-extractable C and N pools that can be readily adapted by both commercial and university soil testing labs. Soil microbial activity is highly related to soil organic C and N, as well as to water-extractable organic C (WEOC) and water-extractable organic N (WEON). The relationship between soil respiration and WEOC and WEON is stronger than between respiration and soil organic C (SOC) and total organic N (TON). We explored the relationship between soil organic C:N and water-extractable organic C:N, as well as their relationship to soil microbial activity as measured by the flush of CO<sub>2</sub> following rewetting of dried soil. In 50 different soils, the relationship between soil microbial activity and water-extractable organic C:N was much stronger than for soil organic C: N. We concluded that the water-extractable organic C:N was a more sensitive measurement of the soil substrate which drives soil microbial activity. We also suggest that a water-extractable organic C:N level > 20 be used as a practical threshold to separate those soils that may have immobilized N with high microbial activity
The comparative productivity of switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus) is of critical importance to the biofuel industry. The radiation use efficiency (RUE), when derived in an environment with non-limiting soil water and soil nutrients, provides one metric of relative productivity. The objective of this study was to compare giant Miscanthus to available switchgrass cultivars, using established methods to calculate RUE of the two species at two disparate sites. Measurements of fraction intercepted photosynthetically active radiation (PAR) and dry matter were taken on plots at Elsberry, MO (Miscanthus and the switchgrass cultivars Alamo, Kanlow, and Cave-in-Rock) and at Gustine, TX (Miscanthus and Alamo switchgrass, irrigated with dairy wastewater and a non-irrigated control). In MO, Miscanthus mean RUE (3.71) was less than Alamo switchgrass mean RUE (4.30). In TX under irrigation, Miscanthus mean RUE was 2.24 and Alamo switchgrass mean RUE was 3.20. In MO, the more northern lowland switchgrass cultivar, Kanlow, showed similar mean RUE (3.70) as Miscanthus. In MO, the northern upland cultivar Cave-in-Rock had a mean RUE (3.17) that was only 85% of that for Miscanthus at MO. Stress (water and nutrients) had a greater effect on Miscanthus RUE than on switchgrass RUE in TX. These results provide realistic RUE values for simulating these important biofuel grasses in diverse environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.