A systematic characterization of single-wall carbon nanotube (SWCNT) material after successive purification steps, including reflux treatment with nitric acid, air oxidation, and annealing, has been performed. Inductively coupled plasma-optical emission spectroscopy shows that a considerable reduction of the metal impurities by up to 95% can be obtained by the nitric acid reflux treatment. During this process, Raman spectroscopy clearly proves that HNO 3 molecules are intercalated into the bundles of SWCNTs. At the same time, SWCNTs have suffered a high degree of degradation and defects are being introduced. The subsequent thermal processes lead to the removal of further defect carbon materials and to the almost complete de-intercalation of the HNO 3 molecules. Transmission electron microscopy reveals that the remaining SWCNT bundles tend to form thick bundles. Thus the applied purification process results in a high-purity SWCNT material with a drastically reduced content of metal nanoparticles and composed of large bundles of SWCNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.