The Arrhenius crossover temperature, TA, corresponds to a thermodynamic state wherein the atomistic dynamics of a liquid becomes heterogeneous and cooperative; and the activation barrier of diffusion dynamics becomes temperature-dependent at temperatures below TA. The theoretical estimation of this temperature is difficult for some types of materials, especially silicates and borates. In these materials, self-diffusion as a function of the temperature T is reproduced by the Arrhenius law, where the activation barrier practically independent on the temperature T. The purpose of the present work was to establish the relationship between the Arrhenius crossover temperature TA and the physical properties of liquids directly related to their glass-forming ability. Using a machine learning model, the crossover temperature TA was calculated for silicates, borates, organic compounds and metal melts of various compositions. The empirical values of the glass transition temperature Tg, the melting temperature Tm, the ratio of these temperatures Tg/Tm and the fragility index m were applied as input parameters. It has been established that the temperatures Tg and Tm are significant parameters, whereas their ratio Tg/Tm and the fragility index m do not correlate much with the temperature TA. An important result of the present work is the analytical equation relating the temperatures Tg, Tm and TA, and that, from the algebraic point of view, is the equation for a second-order curved surface. It was shown that this equation allows one to correctly estimate the temperature TA for a large class of materials, regardless of their compositions and glass-forming abilities.
The development and implementation of the methods for designing amorphous metal alloys with desired mechanical properties is one of the most promising areas of modern materials science. Here, the machine learning methods appear to be a suitable complement to empirical methods related to the synthesis and testing of amorphous alloys of various compositions. In the present work, it is proposed a method to determine amorphous metal alloys with mechanical properties closest to those required. More than 50,000 amorphous alloys of different compositions have been considered, and the Young’s modulus E and the yield strength σy have been evaluated for them by the machine learning model trained on the fundamental physical properties of the chemical elements. Statistical treatment of the obtained results reveals that the fundamental physical properties of the chemical element with the largest mass fraction are the most significant factors, whose values correlate with the values of the mechanical properties of the alloys, in which this element is involved. It is shown that the values of the Young’s modulus E and the yield strength σy are higher for amorphous alloys based on Cr, Fe, Co, Ni, Nb, Mo and W formed by the addition of semimetals (e.g., Be, B, Al, Sn), nonmetals (e.g., Si and P) and lanthanides (e.g., La and Gd) than for alloys of other compositions. Increasing the number of components in alloy from 2 to 7 and changing the mass fraction of chemical elements has no significantly impact on the strength characteristics E and σy. Amorphous metal alloys with the most improved mechanical properties have been identified. In particular, such extremely high-strength alloys include Cr80B20 (among binary), Mo60B20W20 (among ternary) and Cr40B20Nb10Pd10Ta10Si10 (among multicomponent).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.