High-intensity resistance exercise training is a feasible and effective means of counteracting muscle weakness and physical frailty in very elderly people. In contrast, multi-nutrient supplementation without concomitant exercise does not reduce muscle weakness or physical frailty.
The present study examines age-related changes in skeletal muscle size and function after 12 yr. Twelve healthy sedentary men were studied in 1985-86 (T1) and nine (initial mean age 65.4 +/- 4.2 yr) were reevaluated in 1997-98 (T2). Isokinetic muscle strength of the knee and elbow extensors and flexors showed losses (P < 0.05) ranging from 20 to 30% at slow and fast angular velocities. Computerized tomography (n = 7) showed reductions (P < 0.05) in the cross-sectional area (CSA) of the thigh (12.5%), all thigh muscles (14.7%), quadriceps femoris muscle (16.1%), and flexor muscles (14. 9%). Analysis of covariance showed that strength at T1 and changes in CSA were independent predictors of strength at T2. Muscle biopsies taken from vastus lateralis muscles (n = 6) showed a reduction in percentage of type I fibers (T1 = 60% vs. T2 = 42%) with no change in mean area in either fiber type. The capillary-to-fiber ratio was significantly lower at T2 (1.39 vs. 1. 08; P = 0.043). Our observations suggest that a quantitative loss in muscle CSA is a major contributor to the decrease in muscle strength seen with advancing age and, together with muscle strength at T1, accounts for 90% of the variability in strength at T2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.