Acute respiratory distress syndrome (ARDS) is a common disease entity in critical care medicine and is still associated with a high mortality. Because of the heterogeneous character of ARDS, animal models are an insturment to study pathology in relatively standardized conditions. Rodent models can bridge the gap from in vitro investigations to large animal and clinical trials by facilitating large sample sizes under physiological conditions at comparatively low costs. One of the most commonly used rodent models of acute lung inflammation and ARDS is administration of lipopolysaccharide (LPS), either into the airways (direct, pulmonary insult) or systemically (indirect, extra-pulmonary insult). This narrative review discusses the dynamics of important pathophysiological pathways contributing to the physiological response to LPS-induced injury. Pathophysiological pathways of LPS-induced lung injury are not only influenced by the type of the primary insult (e.g., pulmonary or extra-pulmonary) and presence of additional stimuli (e.g., mechanical ventilation), but also by time. As such, findings in animal models of LPS-induced lung injury may depend on the time point at which samples are obtained and physiological data are captured. This review summarizes the current evidence and highlights uncertainties on the molecular dynamics of LPS-induced lung injury in rodent models, encouraging researchers to take accurate timing of LPS-induced injury into account when designing experimental trials.
Social stress is prevalent in many facets of modern society. Epidemiological data suggest that stress is linked to the development of overweight, obesity and metabolic disease. Although there are strong associations between the incidence of obesity with stress and elevated levels of hormones such as cortisol, there are limited animal models to allow investigation of the etiology of increased adiposity resulting from exposure to stress. Perhaps more importantly, an animal model that mirrors the consequences of stress in humans will provide a vehicle to develop rational clinical therapy to treat or prevent adverse outcomes from exposure to chronic social stress. In the visible burrow system (VBS) model of chronic social stress mixed gender colonies are housed for 2 week periods during which male rats of the colony quickly develop a dominance hierarchy. We found that social stress has significant effects on body weight and body composition such that subordinate rats progressively develop characteristics of obesity that occurs, in part, through neuroendocrine alterations and changes in food intake amount. Although SUB are hyperphagic following social stress they do not increase their intake of sucrose solution as CON and DOM do suggesting that they are anhedonic. Consumption of a high fat diet does not appear to affect development of a social hierarchy and appears to enhance the effect that chronic stress has on body composition. The visible burrow system (VBS) model of social stress may be a potential laboratory model for studying stress-associated metabolic disease, including the metabolic syndrome.
ScopeMetabolic flexibility is the ability to switch metabolism between carbohydrate oxidation (CHO) and fatty acid oxidation (FAO) and is a biomarker for metabolic health. The effect on metabolic health of nicotinamide riboside (NR) as an exclusive source of vitamin B3 is unknown and is examined here for a wide range of NR.Design and methodsNine‐week‐old male C57BL/6JRcc mice received a semi‐purified mildly obesogenic (40 en% fat) diet containing 0.14% L‐tryptophan and either 5, 15, 30, 180, or 900 mg NR per kg diet for 15 weeks. Body composition and metabolic parameters were analyzed. Metabolic flexibility was measured using indirect calorimetry. Gene expression in epididymal white adipose tissue (eWAT) was measured using qRT‐PCR .ResultsThe maximum delta respiratory exchange ratio when switching from CHO to FAO (maxΔRERCHO1→FAO) and when switching from FAO to CHO (maxΔRERFAO→CHO2) were largest in 30 mg NR per kg diet (30NR). In eWAT, the gene expression of Pparγ, a master regulator of adipogenesis, and of Sod2 and Prdx3, two antioxidant genes, were significantly upregulated in 30NR compared to 5NR.Conclusion30NR is most beneficial for metabolic health, in terms of metabolic flexibility and eWAT gene expression, of mice on an obesogenic diet.
IntroductionResults from clinical studies have provided evidence for the importance of leukocyte-endothelial interactions in the pathogenesis of pulmonary diseases such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), as well as in systemic events like sepsis and multiple organ failure (MOF). The present study was designed to investigate whether alveolar stretch due to mechanical ventilation (MV) may evoke endothelial activation and inflammation in healthy mice, not only in the lung but also in organs distal to the lung.MethodsHealthy male C3H/HeN mice were anesthetized, tracheotomized and mechanically ventilated for either 1, 2 or 4 hours. To study the effects of alveolar stretch in vivo, we applied a MV strategy that causes overstretch of pulmonary tissue i.e. 20 cmH2O peak inspiratory pressure (PIP) and 0 cmH20 positive end expiratory pressure (PEEP). Non-ventilated, sham-operated animals served as a reference group (non-ventilated controls, NVC).ResultsAlveolar stretch imposed by MV did not only induce de novo synthesis of adhesion molecules in the lung but also in organs distal to the lung, like liver and kidney. No activation was observed in the brain. In addition, we demonstrated elevated cytokine and chemokine expression in pulmonary, hepatic and renal tissue after MV which was accompanied by enhanced recruitment of granulocytes to these organs.ConclusionsOur data implicate that MV causes endothelial activation and inflammation in mice without pre-existing pulmonary injury, both in the lung and distal organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.