Background Benznidazole and nifurtimox are effective drugs used to treat Chagas’ disease; however, their administration in patients in the chronic phase of the disease is still limited, mainly due to their limited efficacy in the later chronic stage of the disease and to the adverse effects related to these drugs. Objectives To evaluate the effect of low doses of nanoformulated benznidazole using a chronic model of Trypanosoma cruzi Nicaragua infection in C57BL/6J mice. Methods Nanoformulations were administered in two different schemes: one daily dose for 30 days or one dose every 7 days, 13 times. Results Both treatment schemes showed promising outcomes, such as the elimination of parasitaemia, a reduction in the levels of T. cruzi-specific antibodies and a reduction in T. cruzi-specific IFN-γ-producing cells, as well as an improvement in electrocardiographic alterations and a reduction in inflammation and fibrosis in the heart compared with untreated T. cruzi-infected animals. These results were also compared with those from our previous work on benznidazole administration, which was shown to be effective in the same chronic model. Conclusions In this experimental model, intermittently administered benznidazole nanoformulations were as effective as those administered continuously; however, the total dose administered in the intermittent scheme was lower, indicating a promising therapeutic approach to Chagas’ disease.
Background: In contrast to adults, Trypanosoma cruzi-infected children have more broadly functional Trypanosoma cruzi-specific T cells, and the total T-cell compartment exhibits fewer signs of immune exhaustion. However, not much is known about the link between immunocompetence and the treatment efficacy for human Chagas disease.Methods: Using cytokine enzyme-linked immunosorbent spot (ELISPOT) polychromatic flow cytometry, cytometric bead assay, multiplex serological assays and quantitative PCR, we evaluated T. cruzi-specific T-cell and antibody immune responses, T-cell phenotypes and parasitemia in children in the early chronic phase of Chagas disease undergoing anti-Trypanosoma cruzi treatment.Results: Treatment with benznidazole or nifurtimox induced a decline in T. cruzi-specific IFN-γ- and IL-2-producing cells and proinflammatory cytokines and chemokines. T-cell responses became detectable after therapy in children bearing T-cell responses under background levels prior to treatment. The total frequencies of effector, activated and antigen-experienced T cells also decreased following anti-T. cruzi therapy, along with an increase in T cells expressing the receptor of the homeostatic cytokine IL-7. Posttreatment changes in several of these markers distinguished children with a declining serologic response suggestive of successful treatment from those with sustained serological responses in a 5-year follow-up study. A multivariate analysis demonstrated that lower frequency of CD4+CD45RA−CCR7−CD62L− T cells prior to drug therapy was an independent indicator of successful treatment.Conclusions: These findings further validate the usefulness of alternative metrics to monitor treatment outcomes. Distinct qualitative and quantitative characteristics of T cells prior to drug therapy may be linked to treatment efficacy.
Introduction. In a pilot study, we showed that intermittent administration of benznidazole in chronic Chagas disease patients resulted in a low rate of treatment suspension and therapeutic failure, as assessed by qPCR at the end of treatment. Herein, a three-year post-treatment follow-up study of the same cohort of patients is presented. Methods. The treatment scheme consisted of 12 doses of benznidazole at 5 mg/kg/day in two daily doses every 5 days. Parasite load, T. cruzi-specific antibodies and serum chemokine levels were measured prior to treatment and after a median follow-up of 36 months post-treatment by kDNA and SatDNA qPCR methods, conventional serological techniques and a Luminex-based assay with recombinant T. cruzi protein, and a cytometric bead array, respectively. Results. At the end of follow-up, 14 of 17 (82%) patients had negative qPCR findings, whereas three of 17 (18%) had detectable nonquantifiable findings by at least one of the qPCR techniques. A decline in parasite-specific antibodies at 12 months post-treatment was confirmed by conventional serological tests and the Luminex assays. Monocyte chemoattractant protein-1 (MCP-1) levels increased after treatment, whereas monokine induced by gamma interferon (MIG) levels decreased. New post-treatment electrocardiographic abnormalities were observed in only one patient who had cardiomyopathy prior to treatment. Conclusions. Altogether, these data strengthen our previous findings by showing that the intermittent administration of benznidazole results in a low rate of treatment suspension, with comparable treatment efficacy to that of a daily dose of 5mg/kg for 60 days.
We have previously demonstrated that immune responses in subjects with chronic Trypanosoma cruzi infection display features common to other persistent infections with signs of T cell exhaustion. Alterations in cytokine receptor signal transduction have emerged as one of the cell-intrinsic mechanisms of T cell exhaustion. Herein, we performed an analysis of the expression of IL-7R components (CD127 and CD132) on CD4+ and CD8+ T cells, and evaluated IL-7-dependent signaling events in patients at different clinical stages of chronic chagasic heart disease. Subjects with no signs of cardiac disease showed a decrease in CD127+CD132+ cells and a reciprocal gain of CD127-CD132+ in CD8+ and CD4+ T cells compared to either patients exhibiting heart enlargement or uninfected controls. T. cruzi infection, in vitro, was able to stimulate the downregulation of CD127 and the upregulation of CD132 on T cells. IL-7-induced phosphorylation of STAT5 as well as Bcl-2 and CD25 expression were lower in T. cruzi-infected subjects compared with uninfected controls. The serum levels of IL-7 was also increased in chronic chagasic patients. The present study highlights perturbed IL-7/IL-7R T cell signaling through STAT5 as a potential mechanism of T cell exhaustion in chronic T. cruzi infection.
BackgroundThe severity of cardiac disease in chronic Chagas disease patients is associated with different features of T-cell exhaustion. Here, we assessed whether the ability of T cells to secrete IFN-γ in response to T. cruzi was linked to disruption in immune homeostasis and inflammation in patients with chronic Chagas disease.Methodology/Principal findingsPBMCs from chronic Chagas disease patients and uninfected controls were examined for frequencies of T. cruzi-responsive IFN-γ-producing cells by ELISPOT and cellular expression and function of IL-7R using flow cytometry. Serum levels of IL-7, IL-21, IL-27, soluble IL-7R, and inflammatory cytokines were also evaluated by ELISA or CBA techniques. Patients possessing T. cruzi-specific IFN-γ-producing cells (i.e. IFN-γ producers) had higher levels of memory T cells capable of modulating the alpha chain of IL-7R and an efficient response to IL-7 compared to that in patients lacking (i.e. IFN-γ nonproducers) parasite-specific T-cell responses. IFN-γ producers also showed low levels of soluble IL-7R, high basal expression of Bcl-2 in T cells and low basal frequencies of activated CD25+ T cells. Modulation of IL-7R was inversely associated with serum IL-6 levels and positively associated with serum IL-8 levels. Circulating IL-21 and IL-27 levels were not associated with the frequency of IFN-γ producing cells but were reduced in less severe clinical forms of the disease. In vitro stimulation of PBMCs with IL-7 or IL-27 enhanced IFN-γ production in IFN-γ producers but not in IFN-γ nonproducers.Conclusions/SignificanceAlterations of the IL-7/IL-7R axis and in the levels of inflammatory cytokines were linked to impaired T. cruzi-specific IFN-γ production. These alterations might be responsible of the process of immune exhaustion observed in chronic Chagas disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.