The aim of this research is to clarify whether the midline axis of the complete upper denture (CUD) is the axis of its torsion during loading, apart from the known bending deflection. Furthermore the present study is intended to estimate the influence of the anterior notches on the torsional deformation of the CUD. Using commercial edentulous molds and standardized procedures, six identical CUDs were fabricated with an initial fraenal notch of 5 mm. Two additional notch conditions were produced by deepening the notch to a total depth of 9 mm and by creating an incisal diastema of 7 mm. Five biaxial (also known as “fish bone”) strain gauges were cemented onto the palatal section of the dentures so that their middle axis coincided with the midline axis of the outer surface of the denture. For the denture specimen used in this study, the specific point of torsion was detected 2 cm from the point of contact of the two artificial central incisors. The presence of a deep fraenal notch and the combination of the deep fraenal notch with the presence of an incisal diastema increased the torsion of the CUD to a significant level (P = 0.006 and P = 0.05, respectively). It was shown that the midline can be the CUD’s axis of torsion. Biaxial strain gauges could be a reliable method of measuring the torsional deformation of the CUD.
The aim of this work was to estimate the internal friction of dental gypsum products by measuring their loss factor with the use of the peak-amplitude method of vibration analysis. Cylindrical specimens for the measurement of compressive strength and rectangular specimens for the measurement of loss factor were constructed from plaster, dental stone, and high-strength dental stone. The loss factor was measured by vibrating specimens up to their resonance frequency, where the peak-amplitude method was applied. It was found that the peak-amplitude method is a simple, quick, and reliable method for measuring the loss factor of dental gypsum products. Furthermore, it was also found that the drying process of these materials reduces their internal friction and hence lowers the loss factor, whereas the use of excess water in their formulation has the reverse result. The correlation between strength and loss factor was found to be strongly negative. The results of this study are in agreement with the results from research on the microstructure of dental gypsum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.