Harnack type inequalities for nonnegative (weak) solutions of degenerate elliptic equations, in divergence form, are established. The asymptotic behavior of solutions of Fuchsian type weighted elliptic operators is also investigated
We study spectral asymptotic properties of conductive layered-thin-fibers of invasive fractal nature. The problem is formulated as a boundary value problem for singular elliptic operators with potentials in a quasi-filling geometry for the fibers. The methods are those of variational singular homogenization and M-convergence. We prove that the spectral measures of the differential problems converge to the spectral measure of a non-trivial self-adjoint operator with fractal terms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.