This article provides a general methodology for calculating the retreat of the coastline and the volume of sand necessary to renourish a beach due to sea level rise (SLR) in the medium-long term. An example is presented, Victoria Beach, and a projection is made for the years 2030, 2040, 2050, and 2100. The results obtained take into account global sea level rise (GSLR), which is worldwide, and local sea level rise (LSLR), which considers climate variability and vertical land movements. Regarding GSLR, data were provided by the projections from IPCC (Intergovernmental Panel on Climate Change) scenarios and empirical models, such as Rahmstorf and Pfeffer. The LSLR data came from the tide gauge station located in Cadiz. Finally, the results obtained showed that global warming impacts erosive effects and the subsequent volume of sand required to renourish beaches. The total sea level rise (TSLR) projections indicated for Victoria Beach are relatively higher than the GSLR projections. Even in the best IPCC scenario (RCP 2.6), Victoria Beach presents a significant erosion of 52 m, requiring a volume of sand of 1.0 Mm3 to supply renourishment.
<p>From a risk management perspective, compound events are very relevant because they can significantly increase the intensity and/or the spatial and temporal extension of the impact. Thus, depending on their magnitude, they may overwhelm the capability of emergency-response services to cope with &#8220;unusual&#8221; situations of major damage and respond to a large number of emergency situations throughout the region at the same time, and/or have to maintain the level of response during a relatively long period of time. When an extreme compound event occurs, its characteristics depart from the idealized conditions that are usually analyzed and, from the risk management perspective, the problem becomes highly multidimensional. This will be illustrated with the impact of the Gloria storm on the Spanish Mediterranean coast in January 2020. During five days extreme conditions (with some record breakings) of multiple hazards (wind, waves, rainfall, river discharge and surge) were recorded. In places such as the mouth of the Tordera River, they occurred simultaneously, but the most common situation was that different extreme conditions of univariate hazard occurred in remote areas of the territory, although they had to be managed simultaneously. In addition, the storm caused massive damage of various kinds, affecting transportation infrastructure, railway services, breakwaters, docks, urban services, housing, agricultural land and four fatalities in Catalonia. As a result of this, although the storm lasted about five days, the management of its impacts was much more extended, so that several months later some repairs were still being carried out. Looking to the event, the analysis of its probability of occurrence will be significantly affected by the adopted perspective. Thus, from the &#8220;physical&#8221; point of view, the analysis would range from the simplest joint probability of some hazards occurring in a given location (classical 2-drivers multivariate events) to multiple hazards over the whole territory (spatially compound with up to four concurrent hazards). From a "management" point of view, the analysis would focus on the probability of different types of damage (and their corresponding services) occurring at the same time, and on the probability of providing services in remote parts of the territory (and, consequently, dividing the available services) within a short period of time. To illustrate this possible multidimensional study plane, we will map the compoundness of the Gloria storm encompassing its induced hazards, impacts, damage and response.&#160;</p><p>This work was supported by the Spanish Agency of Research in the framework of the C3RiskMed project (PID2020-113638RB-C21/ AEI / 10.13039/501100011033).</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.