Automatic in-line measurement of milk composition and milk yield could be a useful tool in management of the dairy herd. Data on milk components and milk yield provide information on milk quality alterations and cow health status but are also useful in planning feeding and breeding. In automatic milking systems, udder quarters are milked individually, enabling analysis and recording at the udder-quarter level. Frequent records of components require knowledge about day-to-day variations. A component with greater day-to-day variation needs more frequent sampling when used as a diagnostic tool and for management decisions. Earlier studies have described the day-to-day variations in milk components for cow composite milk, but with the quarter milking technique and the possible sampling at the udder-quarter level, knowledge about day-to-day variations at the udder-quarter level is needed. In this study, udder-quarter and cow composite milk samples were collected from 42 consecutive milkings of 10 cows during 21 d. Milk yield was recorded and the milk was analyzed for total protein, whey protein, casein, fat, lactose, and somatic cell count. The results showed that the day-to-day variations and mean values for 4 healthy udder quarters within a cow were similar. In addition, different milk components had different levels of day-to-day variation, the least variation being found in lactose (0.9%) and the greatest in fat (7.7%). This suggests that repeated milk sampling and analysis at the udder-quarter level can be used to detect alterations in composition and cow health and would, thus, be helpful in the management of the dairy herd.
Automatic milking systems have made possible the separation of high-and low-quality milk at the udder quarter level during the milking process. The aim of this study was to investigate the composition and yield of milk from individual udder quarters to determine whether deteriorated milk composition occurs in udders that are assumed to be healthy and whether quarters with high-quality milk are found in udders with high milk somatic cell count (SCC). Milk samples were collected on one occasion from 90 cows at udder quarter level and cow composite level. The milk was analyzed for content of total protein, whey protein, casein, fat, lactose, citric acid and SCC; milk yield was registered. The cows were divided into three groups depending on the SCC of their composite milk. Cows in group 1, cow composite SCC , 100 000 cells/ml, were assumed to have healthy udders. However, instances of increased SCC and decreased milk quality were discovered in one or more udder quarters of approximately 30% of the group. Cows in group 2, cow composite SCC of 100 000 to 300 000 cells/ml, and group 3, cow composite SCC . 300 000 cells/ml, were assumed to have affected udders. However, the majority of these cows had one or more udder quarters in which increased SCC and deteriorated milk quality were not detected. Calculations of bulk-tank milk values, when separation of milk from affected udder quarters was performed, indicate that SCC changes to a much greater degree compared to the other milk components. These results show that milk from affected udder quarters suffers compositional changes, but calculations of simulated separation indicate that the compositional changes in bulk-tank milk are small. The effect of separation of milk from individual udder quarters on bulk-tank milk needs to be further studied.
Milk somatic cell count (SCC) is the gold standard in diagnosis of subclinical mastitis, and is also an important parameter in quality programmes of dairy cooperatives. As routine SCC analysis is usually restricted to central laboratories, much effort has been invested in the search for alternative biomarkers of mastitis and milk quality, including the presence in the milk of the acute phase proteins (APP), haptoglobin (Hp) and serum amyloid A (SAA). The aim of this study was to investigate relationships between Hp, SAA and SCC in quarter, cow composite, and bulk tank milk samples. Cows (n = 165), without any clinical signs of disease or abnormalities in the milk or udder, from three different dairy farms, were used. Cow composite milk samples from all cows delivering milk at the sampling occasion were taken once in each herd. In one of the farms, representative quarter milk samples (n = 103) from 26 cows were also collected. In addition, bulk tank milk samples from 96 dairy farms were included in the study. Samples were analysed for Hp, SAA and SCC, and relationships between the parameters were evaluated at quarter, cow and tank milk levels using Chi-square analysis. Milk samples were categorized according to their SCC, and the presence, or no presence, of SAA and Hp, based on the detection limits of the screening methods (0 . 3 mg/l and 1 . 0 mg/l for SAA and Hp, respectively). Hp and SAA were found in milk at quarter, cow composite and bulk tank levels. A large proportion (53%) of the animals had detectable milk concentrations of APP, and SAA was detected more frequently, and at higher concentrations than Hp, regardless of sample type. SAA was detected in as many as 82 % of the bulk tank milk samples. Significant relationships were found between Hp, SAA and SCC at quarter and cow composite milk levels, but only between SAA and SCC at bulk tank milk level. Detectable levels of APP were more common at high SCC.
Dairy herds are expanding and, with increasing numbers of animals in each herd, there is a need for automatic recording of indicators in milk in order to detect mastitis, inflammation of the udder. A number of biomarkers for mastitis have been suggested over the years. Mastitis usually occurs in one of the four udder quarters and since it is now possible to milk each udder quarter separately in automated milking systems, it is important to evaluate the normal variation in the biomarkers at udder quarter level. This study evaluated the normal variations between milkings for some biomarkers in clinically healthy cows, determined by repeated somatic cell count and bacteriological analysis. The biomarkers studied were serum amyloid A (SAA), haptoglobin (Hp), lactate dehydrogenase (LDH), N-acetyl-β-D-glucosaminidase (NAGase) and alkaline phosphatase (AP), parameters that have been suggested as markers for mastitis. Ten cows were monitored on 42 consecutive milking occasions through collection of udder quarter milk samples and representative cow composite milk samples, giving a total of 2100 individual milk samples. Each cow had its individual profile for the concentrations and variations in the parameters analysed. Although there was relatively large variation between cows for the biomarkers analysed, the variation between milkings in clinically healthy quarters within cows was often below 10%. The biomarker with the lowest variation in this study was LDH. The results suggest that comparing quarters within an individual cow can identify deviations from the natural variations between milkings. This could be a valuable tool instead of, or in combination with, a cut-off value for each parameter in order to detect changes in the milk indicating mastitis.
Streptococcus (Str.) agalactiae is a contagious mastitis bacterium, often associated with cases of subclinical mastitis. Different mastitis bacteria have been evaluated previously from a diagnostic point of view, but there is a lack of knowledge concerning their effect on milk composition. Protein composition is important in achieving optimal yield and texture when milk is processed to fermented products, such as cheese and yoghurt, and is thus of great economic value. The aim of this in vitro study was to evaluate protein degradation mainly caused by exogenous proteases originating from naturally occurring Str. agalactiae. The samples were incubated at 37°C to imitate degradation caused by the bacteria in the udder. Protein degradation caused by different strains of Str. agalactiae was also investigated. Protein degradation was observed to occur when Str. agalactiae was added to milk, but there were variations between strains of the bacteria. Caseins, the most economically important proteins in milk, were degraded up to 75% in milk inoculated with Str. agalactiae in relation to sterile ultra-high temperature (UHT) milk, used as control milk. The major whey proteins, α-lactalbumin and β-lactoglobulin, were degraded up to 21% in relation to the sterile control milk. These results suggest that different mastitis bacteria but also different strains of mastitis bacteria should be evaluated from a milk quality perspective to gain knowledge about their ability to degrade the economically important proteins in milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.