In this paper we introduce the multi-period incremental service facility location problem where the goal is to set a number of new facilities over a finite time horizon so as to cover dynamically the demand of a given set of customers. We prove that the coefficient matrix of the allocation subproblem that results when fixing the set of facilities to open is totally unimodular. This allows to solve efficiently the Lagrangean problem that relaxes constraints requiring customers to be assigned to open facilities. We propose a solution approach that provides both lower and upper bounds by combining subgradient optimization to solve a Lagrangean dual with an ad hoc heuristic that uses information from the Lagrangean subproblem to generate feasible solutions. Numerical results obtained in the computational experiments show that the obtained solutions are very good. In general, we get very small percent gaps between upper and lower bounds with little computation effort. ᭧
This paper deals with a stochastic Generalized Assignment Problem with recourse. Only a random subset of the given set of jobs will require to be actually processed. An assignment of each job to an agent is decided a priori, and once the demands are known, reassignments can be performed if there are overloaded agents.We construct a convex approximation of the objective function that is sharp at all feasible solutions. We then present three versions of an exact algorithm to solve this problem, based on branch and bound techniques, optimality cuts, and a special purpose lower bound. Numerical results are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.