Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
This study aims to develop and evaluate fracturing nanofluids from the laboratory to the field trial with the dual purpose of increasing heavy crude oil mobility and reducing formation damage caused by the remaining fracturing fluid (FF). Two fumed silica nanoparticles of different sizes, and alumina nanoparticles were modified on the surface through basic and acidic treatments. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, zeta potential and total acidity. The rheological behavior of the linear gel and the heavy crude oil after adding different chemical nature nanoparticles were measured at two concentrations of 100 and 1000 mg/L. Also, the contact angle assessed the alteration of the rock wettability. The nanoparticle with better performance was the raw fumed silica of 7 nm at 1000 mg/L. These were employed to prepare a fracturing nanofluid from a commercial FF. Both fluids were evaluated through their rheological behavior as a function of time at high pressure following the API RP39 test, and spontaneous imbibition tests were carried out to assess the FF’s capacity to modify the wettability of the porous media. It was possible to conclude that the inclusion of 7 nm commercial silica nanoparticles allowed obtaining a reduction of 10 and 20% in the two breakers used in the commercial fracture fluid formulation without altering the rheological properties of the system. Displacement tests were also performed on proppant and rock samples at reservoir conditions of overburden and pore pressures of 3200 and 1200 psi, respectively, while the temperature was set at 77 °C and the flow rate at 0.3 cm3/min. According to the effective oil permeability, a decrease of 31% in the damage was obtained. Based on these results, the fracturing nanofluid was selected and used in the first worldwide field application in a Colombian oil field with a basic sediment and water (BSW%) of 100 and without oil production. After two weeks of the hydraulic fracture operation, crude oil was produced. Finally, one year after this work, crude oil viscosity and BSW% kept showing reductions near 75% and 33%, respectively; and having passed two years, the cumulative incremental oil production is around 120,000 barrels.
This work aims to develop a fracturing nanofluid with a dual purpose: i) to increase heavy crude oil mobility and ii) to reduce formation damage caused by the remaining fluid. Three commercial nanoparticles were evaluated: two fumed silica of different sizes and one type of alumina. They were acidified and basified, obtaining nine nanoparticles (NPs) by the surface modification, characterized by TEM, DLS, Z Potential and Total Acidity. The effect of adding nanoparticles at different concentrations onto the linear gel and heavy crude oil was determined by their rheological behavior. Also, there was assessed the alteration of the rock wettability by contact angle for all NPs and concentrations. Based on these results, the nanoparticle with better performance was the neutral fumed silica of 7 nm at 1000 mg/L. These were used to make a fracturing nanofluid from a commercial fracturing fluid (FF). Both of them were evaluated through their rheological behavior overtime at high pressure following the API RP39 test and quantitative measurements of the rock sample wettability changes. Displacement tests also were performed on proppant and rock samples at reservoir conditions: pressure and temperature. Finally, there was evaluated the rheological behavior of the crude oil recovered in the displacement test. It was possible to conclude that the inclusion of nanoparticles allowed obtaining a reduction of 10 and 20% in the two breakers used in the commercial fracture fluid formulation. An alteration of the rock wettability was achieved, where the rock sample became up to 50% more wettable to water. Moreover, there was a diminution of 53% in the damage caused by the remaining fracturing fluid to the oil effective permeability in the proppant medium. In the rock sample, a decrease of 31% of this kind of damage was observed. Increases of 28 and 18 % in the crude oil recovery were noticed in the proppant and the rock sample, respectively. Finally, there was a reduction of 40% in the crude oil viscosity, showing the effectiveness of adding nanoparticles to fracturing fluids for increasing oil mobility and reducing the formation damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.