El presente trabajo tiene como objetivo estudiar el operador multiplicación definido sobre los espacios de sucesiones de Köthe, el cual contiene espacios clásicos como lo son el espacio $c_0$, el espacio $l^{\infty}$, los espacios $l^{p}$ para $1 \leq p - \infty$, entre otros. Por esta razón, se hace un estudio de las propiedades del espacio pasando por su definición, las propiedades que posee la norma, su espacio dual y el dual de Köthe del mismo y, por último, se establecen resultados para relacionar la norma del espacio con la norma del dual. Una vez descrito y caracterizado el espacio, se continúa con el estudio de las propiedades que se deben imponer para poder conseguir operadores de multiplicación que sean acotados, tengan rango cerrado, sean compactos o Fredholm, entre otros, todo esto para culminar el estudio con el teorema principal del trabajo, el cual establece las condiciones para calcular la norma esencial del operador multiplicación.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.