Many object-related actions can be recognized by their sound. We found neurons in monkey premotor cortex that discharge when the animal performs a specific action and when it hears the related sound. Most of the neurons also discharge when the monkey observes the same action. These audiovisual mirror neurons code actions independently of whether these actions are performed, heard, or seen. This discovery in the monkey homolog of Broca's area might shed light on the origin of language: audiovisual mirror neurons code abstract contents—the meaning of actions—and have the auditory access typical of human language to these contents.
Many object-related actions can be recognized both by their sound and by their vision. Here we describe a population of neurons in the ventral premotor cortex of the monkey that discharge both when the animal performs a specific action and when it hears or sees the same action performed by another individual. These 'audiovisual mirror neurons' therefore represent actions independently of whether these actions are performed, heard or seen. The magnitude of auditory and visual responses did not differ significantly in half the neurons. A neurometric analysis revealed that based on the response of these neurons, two actions could be discriminated with 97% accuracy.
The capacity to use tools is a fundamental evolutionary achievement. Its essence stands in the capacity to transfer a proximal goal (grasp a tool) to a distal goal (e.g., grasp food). Where and how does this goal transfer occur? Here, we show that, in monkeys trained to use tools, cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for ''reverse pliers,'' an implement that requires finger opening, instead of their closing, to grasp an object. We conclude that the capacity to use tools is based on an inherently goal-centered functional organization of primate cortical motor areas.neurophysiology ͉ tool use ͉ goal coding ͉ motor act
In the ventral premotor cortex of the macaque monkey, there are neurons that discharge both during the execution of hand actions and during the observation of the same actions made by others (mirror neurons). In the present study, we show that a subset of mirror neurons becomes active during action presentation and also when the final part of the action, crucial in triggering the response in full vision, is hidden and can therefore only be inferred. This implies that the motor representation of an action performed by others can be internally generated in the observer's premotor cortex, even when a visual description of the action is lacking. The present findings support the hypothesis that mirror neuron activation could be at the basis of action recognition.
Umilta MA, Brochier T, Spinks RL, Lemon RN. Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. J Neurophysiol 98: 488 -501, 2007. First published February 28, 2007 doi:10.1152/jn.01094.2006. To understand the relative contributions of primary motor cortex (M1) and area F5 of the ventral premotor cortex (PMv) to visually guided grasp, we made simultaneous multiple electrode recordings from the hand representations of these two areas in two adult macaque monkeys. The monkeys were trained to fixate, reach out and grasp one of six objects presented in a pseudorandom order. In M1 326 task-related neurons, 104 of which were identified as pyramidal tract neurons, and 138 F5 neurons were analyzed as separate populations. All three populations showed activity that distinguished the six objects grasped by the monkey. These three populations responded in a manner that generalized across different sets of objects. F5 neurons showed object/grasp related tuning earlier than M1 neurons in the visual presentation and premovement periods. Also F5 neurons generally showed a greater preference for particular objects/grasps than did M1 neurons. F5 neurons remained tuned to a particular grasp throughout both the premovement and reach-to-grasp phases of the task, whereas M1 neurons showed different selectivity during the different phases. We also found that different types of grasp appear to be represented by different overall levels of activity within the F5-M1 circuit. Altogether these properties are consistent with the notion that F5 grasping-related neurons play a role in translating visual information about the physical properties of an object into the motor commands that are appropriate for grasping, and which are elaborated within M1 for delivery to the appropriate spinal machinery controlling hand and digit muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.