Insertion of lattice-valued functions in a monotone manner is investigated. For L a -separable completely distributive lattice (i.e. L admits a countable base which is free of supercompact elements), a monotone version of the Kat¥tovTong insertion theorem for L-valued functions is established. We also provide a monotone lattice-valued version of Urysohn's lemma. Both results yield new characterizations of monotonically normal spaces. Moreover, extension of lattice-valued functions under additional assumptions is shown to characterize also monotone normality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.